64 research outputs found

    Genome wide identification and functional characterization of two LC-PUFA biosynthesis elongase (elovl8) genes in rabbitfish (Siganus canaliculatus)

    Get PDF
    Elongases of very long-chain fatty acids (Elovls) catalyze the rate-limiting step of the elongation pathway that results in net 2‑carbon elongation of pre-existing fatty acyl chains. As a set of crucial enzymes involved in the long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis, Elovls of fish have been investigated extensively in recent years. In the present study, we first identified two novel fish-specific elovl genes (named as elovl8a and elovl8b) from the herbivorous marine teleost rabbitfish (Siganus canaliculatus) by genomic survey and molecular cloning methods. Subsequently, their functional characteristics, tissue distribution patterns and transcriptional changes in response to different nutritional states were investigated. Full-length coding sequences of the elovl8a and elovl8b genes were 804 and 792 bp, encoding 267 and 263 amino acids, respectively. Multiple alignment, genomic synteny and phylogenetic analyses further suggested that elovl8 genes were unique to teleosts. Functional characterization by heterologous expression in yeast showed that Elovl8b could elongate C18 (18:2n-6, 18:3n-3 and 18:4n-3) and C20 (20:4n-6 and 20:5n-3) polyunsaturated fatty acids (PUFA) to longer-chain polyunsaturated fatty acids (LC-PUFA) whereas Elovl8a lacked this ability. In vitro, the expression of elovl8b but not elovl8a in rabbitfish hepatocytes was significantly up-regulated by incubation with 18:2n-6, 18:3n-3, 20:4n-6 and 20:5n-3, respectively. In vivo, compared with fish oil, dietary vegetable oil enriched in C18 PUFA enhanced the expression of elovl8b in rabbitfish brain, liver, intestine and gill. These findings suggest that elovl8b but not elovl8a is a novel active member of the Elovl protein family involved in the LC-PUFA biosynthesis pathway in rabbitfish, and provide novel insight into the mechanisms of LC-PUFA biosynthesis in teleost

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Molecular Dynamics Simulation and Experimental Studies on the Thermomechanical Properties of Epoxy Resin with Different Anhydride Curing Agents

    No full text
    An investigation of the relationship between the microstructure parameters and thermomechanical properties of epoxy resin can provide a scientific basis for the optimization of epoxy systems. In this paper, the thermomechanical properties of diglycidyl ether of bisphenol A (DGEBA)/methyl tetrahydrophthalic anhydride (MTHPA) and DGEBA/nadic anhydride (NA) were calculated and tested by the method of molecular dynamics (MD) simulation combined with experimental verification. The effects of anhydride curing agents on the thermomechanical properties of epoxy resin were investigated. The results of the simulation and experiment showed that the thermomechanical parameters (glass transition temperature (Tg) and Young’s modulus) of the DGEBA/NA system were higher than those of the DGEBA/MTHPA system. The simulation results had a good agreement with the experimental data, which verified the accuracy of the crosslinking model of epoxy resin cured with anhydride curing agents. The microstructure parameters of the anhydride-epoxy system were analyzed by MD simulation, including bond-length distribution, synergy rotational energy barrier, cohesive energy density (CED) and fraction free volume (FFV). The results indicated that the bond-length distribution of the MTHPA and NA was the same except for C–C bonds. Compared with the DGEBA/MTHPA system, the DGEBA/NA system had a higher synergy rotational energy barrier and CED, and lower FFV. It can be seen that the slight change of curing agent structure has a significant effect on the synergy rotational energy barrier, CED and FFV, thus affecting the Tg and modulus of the system

    Discrete Element Modeling on Mechanical Behavior of Heterogeneous Rock Containing X-Shaped Fissure under Uniaxial Compression

    No full text
    Based on the experimental results of an intact rock specimen under uniaxial compression, particle flow code (PFC2D) was adopted to carry out a discrete element modeling (DEM) for the mechanical behavior of heterogeneous rocks containing X-shaped fissures (two intersecting symmetric single fissures) under uniaxial compression. The influences of β (the acute angle between two single fissures) and the direction angle α (the acute angle between the bisector of β and perpendicular to the loading direction) on the strength, deformation, energy, crack propagation, and ultimate failure mode were analyzed in detail. Numerical simulated results showed the following: (1) Due to the X-shaped fissures, not only the peak strength, elastic modulus, crack initiation stress, and damage stress were significantly reduced, and the reduced degree of the peak strength was obviously greater than that of the elastic modulus, but also the brittleness and energy were significantly weakened. (2) The peak strength and elastic modulus generally decreased with the increase of β and increased with the increase of α. Moreover, the change trends of crack initiation stress, damage stress, boundary energy, and total strain energy at the peak stress were consistent with the peak strength. (3) Regardless of the changes of α and β, models all firstly initiated wing cracks at the two tips of the single fissure with a larger inclination angle, and the crack initiation angle decreased with the increase of the inclination angle of the single fissure. (4) The fracture was dominated by tensile microcracks, and no microcracks were generated in a certain range of the X-shaped fissure center. The failure mode was mainly split along the axial direction, and the failure surface started from the tips of the fissure and extended to both ends of models. (5) The uniaxial compressive strength and elastic modulus increased exponentially with the increase of the homogeneity factor. When the homogeneity factor was small, the microcracks were more evenly distributed in the models; when the homogeneity factor was large, the microcracks were mainly concentrated at the tips of the fissure in the models. This study can provide some references for the correct understanding of the mechanical properties of rock masses containing X-shaped fissures

    Micro-Structure and Thermomechanical Properties of Crosslinked Epoxy Composite Modified by Nano-SiO2: A Molecular Dynamics Simulation

    No full text
    Establishing the relationship among the composition, structure and property of the associated materials at the molecular level is of great significance to the rational design of high-performance electrical insulating Epoxy Resin (EP) and its composites. In this paper, the molecular models of pure Diglycidyl Ether of Bisphenol A resin/Methyltetrahydrophthalic Anhydride (DGEBA/MTHPA) and their nanocomposites containing nano-SiO2 with different particle sizes were constructed. The effects of nano-SiO2 dopants and the crosslinked structure on the micro-structure and thermomechanical properties were investigated using molecular dynamics simulations. The results show that the increase of crosslinking density enhances the thermal and mechanical properties of pure EP and EP nanocomposites. In addition, doping nano-SiO2 particles into EP can effectively improve the properties, as well, and the effectiveness is closely related to the particle size of nano-SiO2. Moreover, the results indicate that the glass transition temperature (Tg) value increases with the decreasing particle size. Compared with pure EP, the Tg value of the 6.5 Å composite model increases by 6.68%. On the contrary, the variation of the Coefficient of Thermal Expansion (CTE) in the glassy state demonstrates the opposite trend compared with Tg. The CTE of the 10 Å composite model is the lowest, which is 7.70% less than that of pure EP. The mechanical properties first increase and then decrease with the decreasing particle size. Both the Young’s modulus and shear modulus reach the maximum value at 7.6 Å, with noticeable increases by 12.60% and 8.72%, respectively compared to the pure EP. In addition, the thermal and mechanical properties are closely related to the Fraction of Free Volume (FFV) and Mean Squared Displacement (MSD). The crosslinking process and the nano-SiO2 doping reduce the FFV and MSD value in the model, resulting in better thermal and mechanical properties

    Structure, microparameters and properties of crosslinked DGEBA/MTHPA: A molecular dynamics simulation

    No full text
    Investigating the relationship between microstructure and macroscopic properties of epoxy resin (EP) materials for high-voltage insulation at the molecular level can provide theoretical guidance for the synthetic design of EP. Here, using diglycidyl ether (DGEBA) as the resin matrix and methyl tetrahydrophthalic anhydride (MTHPA) as the curing agent, a set of crosslinked EP molecular models at different curing stages were constructed based on the proposed crosslinking method. We studied the influences of crosslinking density on micro-parameters and macro-properties employing molecular dynamics (MD) simulations. The results indicate that crosslinking of DGEBA/MTHPA is a contraction and exothermic process. The structural parameters and macroscopic properties are closely related to the degree of crosslinking. With the increase of crosslinking density, the mean square displacement (MSD) of the system decreases, and the segment motion in the models is weakened gradually, while, the fractional free volume (FFV) first decreases and then increases. In addition, the thermal and mechanical properties of DGEBA/MTHPA have a significant dependence on the crosslinking density. Increasing crosslinking density can improve the glass transition temperature (Tg), reduce the coefficient of thermal expansion (CTE), and enhances the static mechanical properties of DGEBA/MTHPA system. Furthermore, the relationship between microparameters and properties has been fully investigated. Free volume is an important factor that causes thermal expansion of DGEBA/MTHPA. Moreover, there is a negative correlation between MSD and mechanical moduli. By elevating temperature, the decline in mechanical moduli may be due to the exacerbated thermal motion of the molecules and the increasing MSD values

    Effect of feeding Chinese herb medicine ageratum-liquid on intestinal bacterial translocations induced by H9N2 AIV in mice

    No full text
    Abstract Background As a low pathogenic influenza virus, avian influenza virus subtype H9N2 (H9N2 AIV) often induces high morbidity in association with secondary bacterial infections in chickens or mammals. To explore this phenomenon, the relationship between intestinal microflora changes and bacterial translocations was studied post H9N2 AIV challenge and post AIV infection plus Ageratum-liquid treatment. Methods Illumina sequencing, histological examination and Neongreen-tagged bacteria were used in this study to research the microbiota composition, intestinal barrier, and bacterial translocation in six weeks of BALB/c mice. Results H9N2 AIV infection caused intestinal dysbacteriosis and mucosal barrier damages. Notably, the villus length was significantly reduced (p < 0.01) at 12 dpi and the crypt depth was significantly increased (p < 0.01) at 5 dpi and 12 dpi with infection, resulting in the mucosal regular villus-length/crypt-depth (V/C) was significantly reduced (p < 0.01) at 5 dpi and 12 dpi. Moreover, degeneration and dissolution of the mucosal epithelial cells, loose of the connective tissue and partial glandular atrophy were found in infection group, indicating that intestinal barrier function was weakened. Eventually, intestinal microbiota (Staphylococcus, E. coli, etc.) overrun the intestinal barrier and migrated to liver and lung tissues of the mice at 5 and 12 dpi. Furthermore, the bacteria transferred in mesentery tissue sites from intestine at 36 h through tracking the Neongreen-tagged bacteria. Then the Neongreen-tagged bacteria were isolated from liver at 48 h post intragastrical administration. Simultaneously, Ageratum-liquid could inhibit the intestinal microbiota disorder post H9N2 AIV challenge via the respiratory tract. In addition, this study also illustrated that Ageratum-liquid could effectively prevent intestinal bacterial translocation post H9N2 AIV infection in mice. Conclusion In this study, we report the discovery that H9N2 AIV infection could damage the ileal mucosal barrier and induce the disturbance of the intestinal flora in BALB/c mice resulting in translocation of intestinal bacteria. In addition, this study indicated that Ageratum-liquid can effectively prevent bacterial translocation following H9N2 infection. These findings are of important theoretical and practical significance in prevention and control of H9N2 AIV infection
    • …
    corecore