44 research outputs found

    Distributed training for multi-layer neural networks by consensus

    No full text
    Over the past decade, there has been a growing interest in large-scale and privacy-concerned machine learning, especially in the situation where the data cannot be shared due to privacy protection or cannot be centralized due to computational limitations. Parallel computation has been proposed to circumvent these limitations, usually based on the master-slave and decentralized topologies, and the comparison study shows that a decentralized graph could avoid the possible communication jam on the central agent but incur extra communication cost. In this brief, a consensus algorithm is designed to allow all agents over the decentralized graph to converge to each other, and the distributed neural networks with enough consensus steps could have nearly the same performance as the centralized training model. Through the analysis of convergence, it is proved that all agents over an undirected graph could converge to the same optimal model even with only a single consensus step, and this can significantly reduce the communication cost. Simulation studies demonstrate that the proposed distributed training algorithm for multi-layer neural networks without data exchange could exhibit comparable or even better performance than the centralized training model

    Mask-Guided Generation Method for Industrial Defect Images with Non-uniform Structures

    No full text
    Defect generation is a crucial method for solving data problems in industrial defect detection. However, the current defect generation methods suffer from the problems of background information loss, insufficient consideration of complex defects, and lack of accurate annotations, which limits their application in defect segmentation tasks. To tackle these problems, we proposed a mask-guided background-preserving defect generation method, MDGAN (mask-guided defect generation adversarial networks). First, to preserve the normal background and provide accurate annotations for the generated defect samples, we proposed a background replacement module (BRM), to add real background information to the generator and guide the generator to only focus on the generation of defect content in specified regions. Second, to guarantee the quality of the generated complex texture defects, we proposed a double discrimination module (DDM), to assist the discriminator in measuring the realism of the input image and distinguishing whether or not the defects were distributed at specified locations. The experimental results on metal, fabric, and plastic products showed that MDGAN could generate diversified and high-quality defect samples, demonstrating an improvement in detection over the traditional augmented samples. In addition, MDGAN can transfer defects between datasets with similar defect contents, thus achieving zero-shot defect detection

    DataSheet_1_Associations between serum urate and telomere length and inflammation markers: Evidence from UK Biobank cohort.docx

    No full text
    ObjectiveHyperuricemia and gout have become gradually more common. The effect of serum urate on organism aging and systematic inflammation is not determined. This study aims to evaluate whether serum urate is causally associated with cellular aging markers and serum inflammation markers.MethodsA Mendelian randomization study was performed on summary-level data from the largest published genome-wide association studies. Single nucleotide polymorphisms with a genome-wide significance level were selected as instrumental variables for leukocyte telomere length (LTL), and serum soluble makers of inflammation (CRP, IL-6, TNF-α, and IGF-1). Standard inverse variance weighted (IVW) method was used as the primary statistical method. The weighted median, MR-Egger regression, and MR-PRESSO methods were used for sensitivity analysis.ResultsAn inverse causal association of genetically predicted serum urate levels and LTL was found using IVW method (OR: 0.96, 95%CI 0.95, 0.97; β=-0.040; SE=0.0072; P=4.37×10-8). The association was also supported by MR results using MR-Egger method and weighted median method. The MR-PRESSO analysis and leave-one-out sensitivity analysis supported the robustness of the combined results. In terms of other aging-related serum biomarkers, there was no evidence supporting a causal effect of serum urate on CRP, IL-6, TNF-α, or IGF-1 levels.ConclusionsSerum urate levels are negatively associated with telomere length but are not associated with serum soluble indicators of inflammation. Telomere length may be a critical marker that reflects urate-related organismal aging and may be a mechanism in the age-related pathologies and mortality caused by hyperuricemia.</p

    Clinical Effect of Shenfu Injection in Patients with Septic Shock: A Meta-Analysis and Systematic Review

    Get PDF
    Purpose. To conduct a meta-analysis evaluating the efficacy of Shenfu injection for treating patients with septic shock when compared with conventional therapy. Methods. Eight databases including Pubmed, EMBASE, Cochrane Library, ISI Web of Science, CNKI, Wanfang, VIP, and CBM were searched up to October 2014. Randomized controlled trials assessing the efficacy of Shenfu injection were identified. Mean arterial pressure, heart rate, lactate, and mortality were included as outcome measurements. Results. We analyzed data from 12 randomized controlled trials involving 904 participants. Compared with conventional therapy, Shenfu injection could further increase the mean arterial pressure at 1 hour (SMD 0.38; 95% CI, 0.01–0.74) and 6 hours (SMD 0.82; 95% CI, 0.03–1.61). Shenfu injection could further normalize heart rate at 6 hours (SMD −0.90; 95% CI, −1.47–0.33) and clear serum lactate at 6 hours (SMD −0.51; 95% CI, −0.70–0.32) and 24 hours (SMD, 0.52; 95% CI, −0.77–0.26). As the endpoint of mortality was not unified, it was not meta-analyzed. Conclusions. Based on the findings in present review, Shenfu injection is more effective than conventional therapy in increasing mean arterial pressure, normalizing heart rate, clearing serum lactate, and reducing mortality. These results should be confirmed in higher level clinical trials in the future

    Precise Orbit Solution for Swarm Using Space-Borne GPS Data and Optimized Pseudo-Stochastic Pulses

    No full text
    Swarm is a European Space Agency (ESA) project that was launched on 22 November 2013, which consists of three Swarm satellites. Swarm precise orbits are essential to the success of the above project. This study investigates how well Swarm zero-differenced (ZD) reduced-dynamic orbit solutions can be determined using space-borne GPS data and optimized pseudo-stochastic pulses under high ionospheric activity. We choose Swarm space-borne GPS data from 1–25 October 2014, and Swarm reduced-dynamic orbits are obtained. Orbit quality is assessed by GPS phase observation residuals and compared with Precise Science Orbits (PSOs) released by ESA. Results show that pseudo-stochastic pulses with a time interval of 6 min and a priori standard deviation (STD) of 10−2 mm/s in radial (R), along-track (T) and cross-track (N) directions are optimized to Swarm ZD reduced-dynamic precise orbit determination (POD). During high ionospheric activity, the mean Root Mean Square (RMS) of Swarm GPS phase residuals is at 9–11 mm, Swarm orbit solutions are also compared with Swarm PSOs released by ESA and the accuracy of Swarm orbits can reach 2–4 cm in R, T and N directions. Independent Satellite Laser Ranging (SLR) validation indicates that Swarm reduced-dynamic orbits have an accuracy of 2–4 cm. Swarm-B orbit quality is better than those of Swarm-A and Swarm-C. The Swarm orbits can be applied to the geomagnetic, geoelectric and gravity field recovery

    CXCL12/CXCR4 Axis Regulates Aggrecanase Activation and Cartilage Degradation in a Post-Traumatic Osteoarthritis Rat Model

    No full text
    We evaluated the role of the CXCL12/CXCR4 (C-X-C motif chemokine ligand 12/C-X-C chemokine receptor type 4) axis in aggrecanase-mediated cartilage degradation, and explored the underlying mechanism in a post-traumatic osteoarthritis rat model. Expression of CXCL12/CXCR4 and ADAMTS-5 was analyzed in the knees of osteoarthritic and non-arthritic rats using Western blot, ELISA, immunohistochemistry and immunofluorescence. Rodent studies were performed using Sprague-Dawley rats, with animals divided into three groups: Destabilization of the medial meniscus/AMD3100-treated (DMM/AMD3100-treated), DMM/PBS-treated, and sham controls. Rats were sacrificed after eight weeks, and samples were collected for histology and immunohistochemistry analyses. IL-1-pretreated primary chondrocytes were cultured with untreated control, CXCL12a, siNC + CXCL12a, or siRNA CXCR4 + CXCL12a, and analyzed for expression of relevant markers and cellular pathways. Higher levels of CXCL12 were detected in the knee fluid of osteoarthritic subjects, with strong staining for CXCR4 in chondrocytes and CXCL12 in synoviocytes together with enhanced expression of ADAMTS-5. DMM/AMD3100-treated rats showed a significantly reduced immunological response, with minimal evidence of pathology in both histological and immunohistochemical analyses. Treatment with CXCL12a increased the expression of ACAN, RUNX-2, and ADAMTS-4/5 in IL-1-pretreated primary chondrocytes, together with a decrease in the expression of SOX-9. Molecular analyses revealed strong induction of NF-κB activation, along with phosphorylation of MAPKs, and activation of canonical Wnt/β-catenin signaling. In conclusion, inhibition of SDF-1α/CXCR4 signaling axis was able to inhibit aggrecanase expression and lessen cartilage degeneration in post-traumatic osteoarthritis rats

    CXCL12/CXCR4 Axis Regulates Aggrecanase Activation and Cartilage Degradation in a Post-Traumatic Osteoarthritis Rat Model

    No full text
    We evaluated the role of the CXCL12/CXCR4 (C-X-C motif chemokine ligand 12/C-X-C chemokine receptor type 4) axis in aggrecanase-mediated cartilage degradation, and explored the underlying mechanism in a post-traumatic osteoarthritis rat model. Expression of CXCL12/CXCR4 and ADAMTS-5 was analyzed in the knees of osteoarthritic and non-arthritic rats using Western blot, ELISA, immunohistochemistry and immunofluorescence. Rodent studies were performed using Sprague-Dawley rats, with animals divided into three groups: Destabilization of the medial meniscus/AMD3100-treated (DMM/AMD3100-treated), DMM/PBS-treated, and sham controls. Rats were sacrificed after eight weeks, and samples were collected for histology and immunohistochemistry analyses. IL-1-pretreated primary chondrocytes were cultured with untreated control, CXCL12a, siNC + CXCL12a, or siRNA CXCR4 + CXCL12a, and analyzed for expression of relevant markers and cellular pathways. Higher levels of CXCL12 were detected in the knee fluid of osteoarthritic subjects, with strong staining for CXCR4 in chondrocytes and CXCL12 in synoviocytes together with enhanced expression of ADAMTS-5. DMM/AMD3100-treated rats showed a significantly reduced immunological response, with minimal evidence of pathology in both histological and immunohistochemical analyses. Treatment with CXCL12a increased the expression of ACAN, RUNX-2, and ADAMTS-4/5 in IL-1-pretreated primary chondrocytes, together with a decrease in the expression of SOX-9. Molecular analyses revealed strong induction of NF-κB activation, along with phosphorylation of MAPKs, and activation of canonical Wnt/β-catenin signaling. In conclusion, inhibition of SDF-1α/CXCR4 signaling axis was able to inhibit aggrecanase expression and lessen cartilage degeneration in post-traumatic osteoarthritis rats
    corecore