53 research outputs found

    Simple Cholecystectomy Is Adequate for Patients With T1b Gallbladder Adenocarcinoma < 1 cm in Diameter

    Get PDF
    Purpose: Consensus-based clinical guidelines recommend that simple cholecystectomy (SC) is adequate for T1a gallbladder adenocarcinoma (GBA), but extended cholecystectomy (EC), SC plus lymphatic dissection, should be considered for T1b and more advanced GBA. Whether lymphatic dissection is necessary for the treatment of T1b GBA remains controversial. This study attempts to better define the current criteria for local treatment of T1b GBA, by examining the relationship between lymph node (LN) metastasis and tumor size in such patients.Patients and methods: Clinical data from patients with T1b GBA receiving curative surgical treatment between 2004 and 2015 were collected from the Surveillance, Epidemiology, and End Results (SEER) database. Baseline characteristics for the entire cohort were described, and overall survival (OS) and cancer-specific survival (CSS) were analyzed with the Kaplan–Meier method.Results: In total, 277 patients were enrolled for further analysis; 127 underwent lymphadenectomy. Among them, 23 patients had tumors &lt;1 cm in diameter, none of which had LN metastasis; 104 patients had tumors ≥1 cm, 15 of which had positive LNs. In the group with tumor size &lt;1 cm, there was no significant survival difference between treatment with SC or EC (P = 0.694). A clinical benefit was observed in T1b GBA patients with a tumor size ≥1 cm receiving EC vs. those receiving SC (P = 0.012).Conclusion: SC was adequate for treatment of T1b GBA &lt; 1 cm in diameter. This evidence may be included as part of current guidelines

    Molecular testing raises thyroid nodule fine needle aspiration diagnostic value

    Get PDF
    Thyroid fine needle aspiration biopsy (FNAB) remains indeterminate in 16–24% of the cases. Molecular testing could improve the diagnostic accuracy of FNAB. This study examined the gene mutation profile of patients with thyroid nodules and analyzed the diagnostic ability of molecular testing for thyroid nodules using a self-developed 18-gene test. Between January 2019 and August 2021, 513 samples (414 FN ABs and 99 formalin-fixed paraffin-embedded (FFPE) specimens) underwent molecular testing at Ruijin Hospital. Sensitivity (Sen), specificity (Spe), positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated. There were 457 mutations in 428 samples. The rates of BRAF, RAS, TERT promoter, RET/PTC, and NTRK3 fusion mutations were 73.3% (n = 335), 9.6% (n = 44), 2.8% (n = 13), 4.8% (n = 22), and 0.4% (n = 2), respectively. The diagnostic ability of cytology and molecular testing were evaluated in Bethesda II and V–VI samples. For cytology alone, Sen, Spe, PPV, NPV, and accuracy were 100%, 25.0%, 97.4%, 100%, and 97.4%; these numbers were 87.5%, 50.0%, 98.0%, 12.5%, and 86.2% when considering positive mutation, and 87.5%, 75.0%, 99.0%, 17.6%, and 87.1% when considering positive cytology or and positive mutation. In Bethesda III–IV nodules, when relying solely on the presence of pathogenic mutations for diagnosis, Sen, Spe, P PV, NPV, and AC were 76.2%, 66.7%, 94.1%, 26.8%, and 75.0%, respectively. It might be necessary to analyze the molecular mechanisms of disease development at the genetic level to predict patients with malignant nodules more accurately in different risk strata and develop rational treatment strategies and definite management plans

    The oral cancer microbiome contains tumor space–specific and clinicopathology-specific bacteria

    Get PDF
    The crosstalk between the oral microbiome and oral cancer has yet to be characterized. This study recruited 218 patients for clinicopathological data analysis. Multiple types of specimens were collected from 27 patients for 16S rRNA gene sequencing, including 26 saliva, 16 swabs from the surface of tumor tissues, 16 adjacent normal tissues, 22 tumor outer tissue, 22 tumor inner tissues, and 10 lymph nodes. Clinicopathological data showed that the pathogenic bacteria could be frequently detected in the oral cavity of oral cancer patients, which was positively related to diabetes, later T stage of the tumor, and the presence of cervical lymphatic metastasis. Sequencing data revealed that compared with adjacent normal tissues, the microbiome of outer tumor tissues had a greater alpha diversity, with a larger proportion of Fusobacterium, Prevotella, and Porphyromonas, while a smaller proportion of Streptococcus. The space-specific microbiome, comparing outer tumor tissues with inner tumor tissues, suggested minor differences in diversity. However, Fusobacterium, Neisseria, Porphyromonas, and Alloprevotella were more abundant in outer tumor tissues, while Prevotella, Selenomonas, and Parvimonas were enriched in inner tumor tissues. Clinicopathology-specific microbiome analysis found that the diversity was markedly different between negative and positive extranodal extensions, whereas the diversity between different T-stages and N-stages was slightly different. Gemella and Bacillales were enriched in T1/T2-stage patients and the non-lymphatic metastasis group, while Spirochaetae and Flavobacteriia were enriched in the extranodal extension negative group. Taken together, high-throughput DNA sequencing in combination with clinicopathological features facilitated us to characterize special patterns of oral tumor microbiome in different disease developmental stages

    Bmp4 Is Essential for the Formation of the Vestibular Apparatus that Detects Angular Head Movements

    Get PDF
    Angular head movements in vertebrates are detected by the three semicircular canals of the inner ear and their associated sensory tissues, the cristae. Bone morphogenetic protein 4 (Bmp4), a member of the Transforming growth factor family (TGF-β), is conservatively expressed in the developing cristae in several species, including zebrafish, frog, chicken, and mouse. Using mouse models in which Bmp4 is conditionally deleted within the inner ear, as well as chicken models in which Bmp signaling is knocked down specifically in the cristae, we show that Bmp4 is essential for the formation of all three cristae and their associated canals. Our results indicate that Bmp4 does not mediate the formation of sensory hair and supporting cells within the cristae by directly regulating genes required for prosensory development in the inner ear such as Serrate1 (Jagged1 in mouse), Fgf10, and Sox2. Instead, Bmp4 most likely mediates crista formation by regulating Lmo4 and Msx1 in the sensory region and Gata3, p75Ngfr, and Lmo4 in the non-sensory region of the crista, the septum cruciatum. In the canals, Bmp2 and Dlx5 are regulated by Bmp4, either directly or indirectly. Mechanisms involved in the formation of sensory organs of the vertebrate inner ear are thought to be analogous to those regulating sensory bristle formation in Drosophila. Our results suggest that, in comparison to sensory bristles, crista formation within the inner ear requires an additional step of sensory and non-sensory fate specification

    A simulation of a large-scale drifting snowstorm in the turbulent boundary layer

    No full text
    Drifting snowstorms are an important aeolian process that reshape alpine glaciers and polar ice shelves, and they may also affect the climate system and hydrological cycle since flying snow particles exchange considerable mass and energy with air flow. Prior studies have rarely considered full-scale drifting snowstorms in the turbulent boundary layer; thus, the transportation feature of snow flow higher in the air and its contribution are largely unknown. In this study, a large-eddy simulation is combined with a subgrid-scale velocity model to simulate the atmospheric turbulent boundary layer, and a Lagrangian particle tracking method is adopted to track the trajectories of snow particles. A drifting snowstorm that is hundreds of meters in depth and exhibits obvious spatial structures is produced. The snow transport flux profile at high altitude, previously not observed, is quite different from that near the surface; thus, the extrapolated transport flux profile may largely underestimate the total transport flux. At the same time, the development of a drifting snowstorm involves three typical stages, rapid growth, gentle growth, and equilibrium, in which large-scale updrafts and subgrid-scale fluctuating velocities basically dominate the first and second stages, respectively. This research provides an effective way to gain an insight into natural drifting snowstorms

    GRL-DATA

    No full text
    This folder contains the sounding file of drifting snow sublimation simulation and original data of figures

    Design of a Novel Six-Axis Wrist Force Sensor

    No full text
    A novel elastic body design idea of six-axis wrist force sensor with a floating beam was raised based on the analysis of the robot six-axis wrist force sensor with a floating beam. The design ideas improve the sensor&rsquo;s dynamic performance significantly, while not reducing its sensitivity. First, the design ideas were described in detail, which were analyzed by mechanical modeling and were verified by finite element analysis. Second, the static simulation analysis of the novel elastomer of sensor was carried out. According to the strain distribution performance, the position of the strain gauges pasted and the connection mode of the full-bridge circuits were decided, which can achieve theoretical decoupling. Finally, the comparison between the static and dynamic performance of the novel sensor and the original sensor with floating beams was done. The results show that the static and dynamic performance of the novel six-axis wrist sensor are all better than the original sensor

    Saltation of non-spherical sand particles.

    No full text
    Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement
    corecore