53 research outputs found

    An Unusual Complication of Self-Expandable Metal Stent Placement in Malignant Sigmoid Obstruction

    No full text
    Self-expandable metal stent (SEMS) for malignant colorectal obstruction is widely used as a bridge to elective surgery or palliative treatment. However, with the increasing use of SEMS for treatment, complication rates associated with stents have been raised as a concern. We experienced a rare migration-related complication that a stent partially migrated out of the anus with an incarceration. A 62-year-old man was admitted with sigmoid malignant obstruction. Due to multiple metastases, he refused to undergo colostomy, and an uncovered SEMS was placed. Subsequently, he started chemotherapy. Seven months after placement, the stent migrated into the rectum. After unsuccessful attempts to extract the stent, he sought our assistance. We observed that half of the stent was outside the anus, and a 15 mm lump of mucosa was embedded in the proximal end of the stent. After several attempts, we successfully removed the SEMS. Stent incarceration following migration is not a common occurrence, but it serves as a reminder that clinicians need to be more vigilant about complications that may arise after stent implantation. We describe this unusual complication and share our experience about the removal of the stent

    Identification of typical dust sources in Tarim Basin based on multi-wavelength Raman polarization lidar

    No full text
    International audienceAsian mineral dust is one of the main aerosol sources in the Earth-atmosphere system, which generates significant effect on air quality, human health, and climate change. Meanwhile, knowledge of vertical optical properties of dust aerosol is crucially needed for identification of the dust source and improved understanding of radiative effect in climate model. In the study, triple-wavelength polarization Raman lidar observation combined with photometer, radiosonde and simultaneous model data was performed at Kashi in the northwestern of Tarim Basin. Taklimakan desert, located in the center of Tarim Basin, is the largest desert of Asia. Base on the measurement and model, two typical dust sources in different altitude were identified in the study, namely Taklimakan desert (East Road), Central Asia desert and Middle East desert (West Road). Particle size distribution of photometer shows that these cases were all coarse-mode-dominated with effective radius larger than 1.7 μm. The lidar observations revealed particle linear depolarization ratios (PLDR) of the Taklimakan dust ranged from 0.28 to 0.34 at 355 nm, 0.33 to 0.35 at 532 nm and 0.29-0.35 at 1064 nm, while lidar ratios (LR) ranged from 47 to 54 sr at 355 nm and from 42 to 51 sr at 532 nm wavelength. Spectral variation of LR and PLDR for Asian dust and Saharan dust was analyzed. All observed Asian dust present the consistent spectral variation that lidar ratio at 355 nm is higher than that of 532 nm, which however is not the case for Saharan dust. Both Saharan and Asian dust measurement PLDR at 532 nm is larger than that of 355 nm and 1064 nm. The measured dust properties provide particularly valuable information for dust simulation and dust climate model for different dust source

    The characterization of Taklamakan dust properties using a multiwavelength Raman polarization lidar in Kashi, China

    No full text
    International audienceThe Taklamakan desert is an important dust source for the global atmospheric dust budget and a cause of the dust weather in East Asia. The characterization of Taklamakan dust in the source region is still very limited. To fill this gap, the DAO (dust aerosol observation) was conducted in April 2019 in Kashi, China. The Kashi site is about 150 km from the western rim of the Taklamakan desert and is strongly impacted by desert dust aerosols, especially in spring time, i.e., April and May. According to sun-sky photometer measurements, the aerosol optical depth (at 500 nm) varied in the range of 0.07-4.70, and the Ångström exponent (between 440 and 870 nm) in the range of 0.0-0.8 in April 2019. In this study, we provide the first profiling of the 2α+3β+3δ parameters of Taklamakan dust based on a multiwavelength Mie-Raman polarization lidar. For Taklamakan dust, the Ångström exponent related to the extinction coefficient (EAE, between 355 and 532 nm) is about 0.01 ± 0.30, and the lidar ratio is found to be 45 ± 7 sr (51 ± 8-56 ± 8 sr) at 532 (355) nm. The particle linear depolarization ratios (PLDRs) are about 0.28-0.32 ± 0.07 at 355 nm, 0.36 ± 0.05 at 532 nm and 0.31 ± 0.05 at 1064 nm. Both lidar ratios and depolarization ratios are higher than the typical values of Central Asian dust in the literature. The difference is probably linked to the fact that observations in the DAO campaign were collected close to the dust source; therefore, there is a large fraction of coarse-mode and giant particles (radius >20 µm) in the Taklamakan dust. Apart from dust, fine particles coming from local anthropogenic emissions and long-range transported aerosols are also non-negligible aerosol components. The signatures of pollution emerge when dust concentration decreases. The polluted dust (defined by PLDR532≤0.30 and EAE355-532≥0.20) is featured with reduced PLDRs and enhanced EAE355-532 compared to Taklamakan dust. The mean PLDRs of polluted dust generally distributed in the range of 0.20-0.30. Due to the complexity of the nature of the involved pollutants and their mixing state with dust, the lidar ratios exhibit larger variabilities compared to those of dust. The study provides the first reference of novel characteristics of Taklamakan dust measured by Mie-Raman polarization lidar. The data could contribute to complementing the dust model and improving the accuracy of climate modeling

    The Effects of Local Pollution and Transport Dust on Aerosol Properties in Typical Arid Regions of Central Asia during DAO-K Measurement

    No full text
    Dust aerosol has an impact on both the regional radiation balance and the global radiative forcing estimation. The Taklimakan Desert is the focus of the present research on the optical and micro-physical characteristics of the dust aerosol characteristics in Central Asia. However, our knowledge is still limited regarding this typical arid region. The DAO-K (Dust Aerosol Observation-Kashgar) campaign in April 2019 presented a great opportunity to understand further the effects of local pollution and transported dust on the optical and physical characteristics of the background aerosol in Kashgar. In the present study, the consistency of the simultaneous observations is tested, based on the optical closure method. Three periods dominated by the regional background dust (RBD), local polluted dust (LPD), and Taklimakan transported dust (TTD), are identified through the backward trajectories, combined with the dust scores from AIRS (Atmospheric Infrared Sounder). The variations of the optical and micro-physical properties of dust aerosols are then studied, while a direct comparison of the total column and near surface is conducted. Generally, the mineral dust is supposed to be primarily composed of silicate minerals, which are mostly very weakly absorbing in the visible spectrum. Although there is very clean air (with PM2.5 of 21 μg/m3), a strong absorption (with an SSA of 0.77, AAE of 1.62) is still observed during the period dominated by the regional background dust aerosol. The near-surface observations show that there is PM2.5 pollution of ~98 μg/m3, with strong absorption in the Kashgar site during the whole observation. Local pollution can obviously enhance the absorption (with an SSA of 0.72, AAE of 1.58) of dust aerosol at the visible spectrum. This is caused by the increase in submicron fine particles (such as soot) with effective radii of 0.14 μm, 0.17 μm, and 0.34 μm. The transported Taklimakan dust aerosol has a relatively stable composition and strong scattering characteristics (with an SSA of 0.86, AAE of ~2.0). In comparison to the total column aerosol, the near-surface aerosol has the smaller size and the stronger absorption. Moreover, there is a very strong scattering of the total column aerosol. Even the local emission with the strong absorption has a fairly minor effect on the total column SSA. The comparison also shows that the peak radii of the total column PVSD is nearly twice as high as that of the near-surface PVSD. This work contributes to building a relationship between the remote sensing (total column) observations and the near-surface aerosol properties, and has the potential to improve the accuracy of the radiative forcing estimation in Kashgar

    The Effects of Local Pollution and Transport Dust on Aerosol Properties in Typical Arid Regions of Central Asia during DAO-K Measurement

    No full text
    International audienceDust aerosol has an impact on both the regional radiation balance and the global radiative forcing estimation. The Taklimakan Desert is the focus of the present research on the optical and micro-physical characteristics of the dust aerosol characteristics in Central Asia. However, our knowledge is still limited regarding this typical arid region. The DAO-K (Dust Aerosol Observation-Kashgar) campaign in April 2019 presented a great opportunity to understand further the effects of local pollution and transported dust on the optical and physical characteristics of the background aerosol in Kashgar. In the present study, the consistency of the simultaneous observations is tested, based on the optical closure method. Three periods dominated by the regional background dust (RBD), local polluted dust (LPD), and Taklimakan transported dust (TTD), are identified through the backward trajectories, combined with the dust scores from AIRS (Atmospheric Infrared Sounder). The variations of the optical and micro-physical properties of dust aerosols are then studied, while a direct comparison of the total column and near surface is conducted. Generally, the mineral dust is supposed to be primarily composed of silicate minerals, which are mostly very weakly absorbing in the visible spectrum. Although there is very clean air (with PM2.5 of 21 μg/m3), a strong absorption (with an SSA of 0.77, AAE of 1.62) is still observed during the period dominated by the regional background dust aerosol. The near-surface observations show that there is PM2.5 pollution of ~98 μg/m3, with strong absorption in the Kashgar site during the whole observation. Local pollution can obviously enhance the absorption (with an SSA of 0.72, AAE of 1.58) of dust aerosol at the visible spectrum. This is caused by the increase in submicron fine particles (such as soot) with effective radii of 0.14 μm, 0.17 μm, and 0.34 μm. The transported Taklimakan dust aerosol has a relatively stable composition and strong scattering characteristics (with an SSA of 0.86, AAE of ~2.0). In comparison to the total column aerosol, the near-surface aerosol has the smaller size and the stronger absorption. Moreover, there is a very strong scattering of the total column aerosol. Even the local emission with the strong absorption has a fairly minor effect on the total column SSA. The comparison also shows that the peak radii of the total column PVSD is nearly twice as high as that of the near-surface PVSD. This work contributes to building a relationship between the remote sensing (total column) observations and the near-surface aerosol properties, and has the potential to improve the accuracy of the radiative forcing estimation in Kashgar.Keywords:local polluted dust; Taklimakan transported dust; SSA; particle volume size distribution; AAE; complex refractive inde

    Comparison of treatment safety and patient survival in elderly versus nonelderly patients with advanced hepatocellular carcinoma receiving sorafenib combined with transarterial chemoembolization: a propensity score matching study.

    No full text
    AIMS:This retrospective study was carried out to compare the outcomes between elderly (≥70 years of age) and nonelderly patients (<70 years of age) with advanced hepatocellular carcinoma (HCC) who received sorafenib combined with transarterial chemoembolization (TACE). METHODS:88 patients with a confirmed diagnosis of advanced HCC were enrolled in this study. Of these, 24 elderly patients were matched with 48 nonelderly patients at a 1:2 ratio using propensity score matching to minimize selection bias. The related adverse events and survival benefits were compared between the two groups. RESULTS:Sorafenib combined with TACE was equally well tolerated in both age groups, and grade 3 or 4 adverse events were similarly observed in 54.2% of elderly and 50.0% of nonelderly patients (P = 0.739). There were no significant differences in survival time between the elderly and nonelderly patients (P = 0.876). Significant prognostic factors for overall survival as identified by multivariate analysis were the Child-Pugh score and portal vein invasion. CONCLUSIONS:Sorafenib combined with TACE may be well tolerated and effective in elderly patients with advanced HCC. Age alone is not a parameter for the treatment of advanced HCC patients
    • …
    corecore