67 research outputs found

    Molecular Cytogenetic Characterization of Novel Wheat-rye T1RS.1BL Translocation Lines with High Resistance to Diseases and Great Agronomic Traits

    No full text
    Rye has been used worldwide as a source for the genetic improvement of wheat. In this study, two stable wheat-rye primary T1RS.1BL translocation lines were selected from the progeny of the crossing of the wheat cultivar Mianyang11-1 and a Chinese local rye variety, Weining. These two novel translocation lines were identified by molecular cytogenetic analysis. PCR results, multi-color fluorescence in situ hybridization (MC-FISH), and acid polyacrylamide gel electrophoresis (A-PAGE) indicated that both new translocation lines harbor a pair of T1RS.1BL translocation chromosomes, and have been named RT828-10 and RT828-11, respectively. The cytogenetic results also indicated that the pSc119.2 signals of 5AL were absent in both lines along with the pSc119.2 signals of 4AL of RT828-11. When inoculated with different stripe rust and powdery mildew isolates, both lines expressed high resistance to Puccinia striiformis f. sp. tritici and Blumeria graminis f. sp. tritici pathotypes, which are prevalent in China and are virulent on Yr9 and Pm8. The line RT828-11 also exhibited excellent agronomic traits in the field. The present study indicates that this rye variety may carry untapped variations that could potentially be used for wheat improvement

    Molecular Cytogenetic Characterization of New Wheat-Rye 1R(1B) Substitution and Translocation Lines from a Chinese Secale cereal L. Aigan with Resistance to Stripe Rust.

    No full text
    Secale cereale L. has been used worldwide as a source of genes for agronomic and resistance improvement. In this study, a stable wheat-rye substitution line and 3 primary 1RS.1BL translocation lines were selected from the progeny of the crossing of the Chinese local rye Aigan variety and wheat cultivar Mianyang11. The substitution and translocation lines were identified by molecular cytogenetic analysis. PCR results, fluorescence in situ hybridization and acid polyacrylamide gel electrophoresis indicated that there were a pair of 1R chromosomes in the substitution line which have been named RS1200-3, and a pair of 1RS.1BL translocation chromosomes in the other 3 translocation lines, which have been named RT1163-4, RT1217-1, and RT1249. When inoculated with stripe rust isolates, these 4 lines expressed high resistance to several Puccinia striiformis f. sp Tritici pathotypes that are virulent on Yr9. Moreover, the different response pattern of resistance among them suggested that the diversity of resistance genes for wheat stripe rust exists in the rye. These 4 lines also showed better agronomic performances than their wheat parent. The GS indices also showed the genetic diversity of the 1RS which derived from same rye variety. The present study indicates that rye cultivars may carry untapped variations that could potentially be used for wheat improvement

    Molecular Cytogenetic and Physiological Characterization of a Novel Wheat-Rye T1RS.1BL Translocation Line from Secale cereal L. Weining with Resistance to Stripe Rust and Functional “Stay Green” Trait

    No full text
    In this study, a novel T1RS.1BL translocation line RT843-5 was selected from a cross between wheat Mianyang11 (MY11) and Weining rye. The results of MC-FISH, PCR, and A-PAGE showed that RT843-5 contained two intact T1RS.1BL translocation chromosomes. RT843-5 showed resistance to the most virulent and frequently occurring stripe rust races/isolates. Additionally, RT843-5 showed resistance in the field in locations where stripe rust outbreaks have been the most severe in China. Genetic analysis indicated one new gene for stripe rust resistance, located on 1RS of RT843-5, which was tentatively named YrRt843. Furthermore, the chlorophyll content, the activities of catalase (CAT), and superoxide dismutase (SOD), and the net photosynthetic rate (Pn) of RT843-5 were significantly higher than those in its wheat parent MY11, whereas malondialdehyde (MDA) accumulation was significantly lower after anthesis in RT843-5 compared to in MY11. RT843-5 had a significantly higher 1000-kernel weight and yield than MY11. The results indicated that RT843-5 exhibited functional stay-green traits after anthesis, that delayed the senescence process in wheat leaves during the filling stage and had positive effects on grain yield. The present study indicated that Weining rye may carry untapped variations as a potential source of resistance, and that RT843-5 could be an important material for wheat breeding programs in the future

    New types of wheat chromosomal structural variations in derivatives of wheat-rye hybrids.

    No full text
    Chromosomal rearrangements induced by wheat-rye hybridization is a very well investigated research topic. However, the structural alterations of wheat chromosomes in wheat-rye hybrids are seldom reported.Octoploid triticale lines were derived from common wheat Triticum. aestivum L. 'Mianyang11'×rye Secale cereale L. 'Kustro'. Some progeny were obtained by the controlled backcrossing of triticale with 'Mianyang11' and common wheat T. aestivum L. 'Chuannong27' followed by self-fertilization. Fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) using Oligo-pSc119.2-1, Oligo-pTa535-1 and rye genomic DNA as probes were used to analyze the mitotic chromosomes of these progeny. Alterations of wheat chromosomes including 5A, 6A, 1B, 2B, 6B, 7B, 1D, 3D and 7D were observed. 5AL arm carrying intercalary Oligo-pSc119.2-1, Oligo-pTa535-1 or both Oligo-pSc119.2-1 and Oligo-pTa535-1 signals, 6AS, 1BS and 1DL arms containing terminal Oligo-pSc119.2-1 signal, 6BS and 3DS arms without terminal Oligo-pSc119.2-1 signal, 7BS without subtelomeric Oligo-pSc119.2-1 signal and 7DL with intercalary Oligo-pSc119.2-1 signal have been observed. However, these changed wheat chromosomes have not been detected in 'Mianyang11' and Chuannong 27. The altered 5A, 6A, 7B and 7D chromosomes in this study have not been reported and represent several new karyotype structures of common wheat chromosomes.These rearranged wheat chromosomes in the present study afford some new genetic variations for wheat breeding program and are valuable materials for studying the biological function of tandem repetitive DNA sequences

    The Polymorphisms of Oligonucleotide Probes in Wheat Cultivars Determined by ND-FISH

    No full text
    Non-denaturing fluorescence in situ hybridization (ND-FISH) has been used to distinguish wheat chromosomes and to detect alien chromosomes in the wheat genome. In this study, five different oligonucleotide probes were used with ND-FISH to examine 21 wheat cultivars and lines. These oligonucleotide probes distinguished 42 wheat chromosomes and also detected rye chromatin in the wheat genome. Moreover, the signal patterns of the oligonucleotide probes Oligo-pTa535-1 and Oligo-pSc119.2-1 showed high polymorphism in the wheat chromosomes. A total of 17.6% of the A group chromosomes, 25.9% of the B group chromosomes and 8.9% of the D group chromosomes showed obvious mutations when they were compared to the standard ND-FISH signal patterns, and most of them were Oligo-pSc119.2-1 mutants. The results suggested that these polymorphisms could be induced by the crossing of wheat cultivars. The results provided more information for the further application of oligonucleotide probes and ND-FISH

    Rapid and Quantitative Determination of S-Adenosyl-L-Methionine in the Fermentation Process by Surface-Enhanced Raman Scattering

    No full text
    Concentrations of S-Adenosyl-L-Methionine (SAM) in aqueous solution and fermentation liquids were quantitatively determined by surface-enhanced Raman scattering (SERS) and verified by high-pressure liquid chromatography (HPLC). The Ag nanoparticle/silicon nanowire array substrate was fabricated and employed as an active SERS substrate to indirectly measure the SAM concentration. The linear relationship between the integrated intensity of peak centered at ~2920 cm−1 in SERS spectra and the SAM concentration was established, and the limit of detections of SAM concentrations was analyzed to be ~0.1 g/L. The concentration of SAM in real solution could be predicted by the linear relationship and verified by the HPLC detection method. The relative deviations (δ) of the predicted SAM concentration are less than 13% and the correlation coefficient is 0.9998. Rolling-Circle Filter was utilized to subtract fluorescence background and the optimal results were obtained when the radius of the analyzing circle is 650 cm−1

    The Core and Distinction of the Gut Microbiota in Chinese Populations across Geography and Ethnicity

    No full text
    The diversity of the human gut microbiota constitutes a fundamental health indicator of different populations. The relative importance of geographical location and ethnicity on the gut microbiota, however, has not been previously addressed. Due to unique ethnic distributions across China, we recruited distinct minority ethnic groups, including Han populations, in each of the seven cities that were explored in this study. We investigated the gut microbiota of 394 healthy subjects (14 groups) from these seven different cities using 16S rRNA sequencing. Our results indicated that both geographical location and ethnicity were major factors. However, geographical location exhibited greater influence than ethnicity on both the composition and diversity of the gut microbiota. In addition, a total of 15 shared biomarkers at the genus level were identified in three distinct locations, including seven in Inner Mongolia, seven in Xinjiang and one in Gansu. Furthermore, 65 unique biomarkers were found in 14 population groups, which indicated specific communities in different populations. Based on the gut microbiota species, two main enterotypes—namely Prevotella (ETP) and Bacteroides (ETB), which consist of Prevotella and Bacteroides as the core bacterial genus, were observed in Chinese populations. Our unique experimental design using the same ethnic group—Han, as a control in different locations, enables delineating the importance of geographical location and ethnicity on the gut microbiota, and provides the fundamental characteristics of gut microbiota diversity in Chinese populations

    Utilization of a Wheat55K SNP Array for Mapping of Major QTL for Temporal Expression of the Tiller Number

    No full text
    Maximum tiller number and productive tiller number are important traits for wheat grain yield, but research involving the temporal expression of tiller number at different quantitative trait loci (QTL) levels is limited. In the present study, a population set of 371 recombined inbred lines derived from a cross between Chuan-Nong18 and T1208 was used to construct a high-density genetic map using a Wheat55K SNP Array and to perform dynamic QTL analysis of the tiller number at four growth stages. A high-density genetic map containing 11,583 SNP markers and 59 SSR markers that spanned 4,513.95 cM and was distributed across 21 wheat chromosomes was constructed. A total of 28 single environmental QTL were identified in the recombined inbred lines population, and among these, seven QTL were stable and used for multi-environmental and dynamic analysis. These QTL were mapped to chromosomes 2D, 4A, 4D, 5A, 5D, and 7D, respectively. Each QTL explained 1.63–21.22% of the observed phenotypic variation, with an additive effect from -20.51 to 11.59. Dynamic analysis showed that cqTN-2D.2 can be detected at four growth stages of tillering, explaining 4.92–17.16% of the observed phenotypic variations and spanning 13.71 Mb (AX-109283238-AX-110544009: 82189047-95895626) according to the physical location of the flanking markers. The effects of the stable QTL were validated in the recombined inbred lines population, and the beneficial alleles could be utilized in future marker-assisted selection. Several candidate genes for MTN and PTN were predicted. The results provide a better understanding of the QTL selectively expressing the control of tiller number and will facilitate future map-based cloning. 9.17% SNP markers showed best hits to the Chinese Spring contigs. It was indicated that Wheat55K Array was efficient and valid to construct a high-density wheat genetic map

    Identification of translocation chromosomes.

    No full text
    <p>(A)–(D), FISH and GISH using rye genomic DNA (red), pSc119.2(green), and pAs1 (red) as probes. (A) and (B), Wheat and rye parents. (C) and (D), new primary 1RS.1BL translocation lines. (E), FISH using 6c6 (green) and telomere sequence (red) as probes, indicating the integrity of all chromosomes. (F), FISH using 6c6 (green) and pAWRC.1 (red) as probes, indicating that the 1RS arm is intact in the translocation.</p
    • …
    corecore