35 research outputs found

    CHARACTERISTICS AND KINETICS OF BIOMASS PYLOLYSIS IN A MICRO FLUIDIZED BED REACTOR

    Get PDF
    A Micro Fluidized Bed Reactor (MFBR) was developed to enable on-line pulse feeding and isothermal differential reaction of particle reactant. Application of the MFBR to biomass pyrolysis demonstrated that the resulting globe kinetics parameters were 11.77 kJ/mol and 1.45 s-1 on the gas release characteristics, respectively

    Motor Imagery Decoding Enhancement Based on Hybrid EEG-fNIRS Signals

    Get PDF
    This study explores the combination of electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) to enhance the decoding performance of motor imagery (MI) tasks for brain-computer interface (BCI). The experiment involved measuring 64 channels of EEG signals and 20 channels of fNIRS signals simultaneously during a task of the left-right hand MI. By combining these two types of signals, the study aimed to understand how feature fusion affected classification accuracy for MI. The EEG signals were filtered into three bands ( θ : 4–7 Hz, α : 8–13 Hz, β : 14–30 Hz), while the fNIRS signals were filtered into 0.02-0.08 Hz to improve signal quality for subsequent analysis. The common spatial patterns (CSP) algorithm was utilized to extract features from both EEG and fNIRS signals. This allowed the researchers to create a fused signal with both EEG and fNIRS features that could then be processed using principal component analysis (PCA). Finally, the processed data was fed into a support vector machine (SVM) classifier, which improved the mean accuracy rate of MI to 92.25%. By comparing the classification accuracies obtained with fused and unfused segments of EEG and fNIRS signals, the study discovered that fusing the signals significantly improved classification accuracy by 5%-10%. Furthermore, analyzing the activated brain regions using fNIRS showed that the auxiliary motor cortex was significantly activated during MI. These results demonstrate that hybrid signals with a fusion strategy can enhance the stability and fault tolerance in BCI systems, making them valuable for practical applications

    Overexpression of a MYB Family Gene, OsMYB6, Increases Drought and Salinity Stress Tolerance in Transgenic Rice

    Get PDF
    MYB transcription factors have been demonstrated to play key regulatory roles in plant growth, development and abiotic stress response. However, knowledge concerning the involvement of rice MYB genes in salinity and drought stress resistance are largely unknown. In the present study, we cloned and characterized the OsMYB6 gene, which was induced by drought and salinity stress. Subcellular localization of OsMYB6-YFP fusion protein in protoplast cells indicated that OsMYB6 was localized in the nucleus. Overexpression of OsMYB6 in rice did not suggest a negative effect on the growth and development of transgenic plants, but OsMYB6-overexpressing plants showed increased tolerance to drought and salt stress compared with wild-type plants, as are evaluated by higher proline content, higher CAT and SOD activities, lower REL and MDA content in transgenic plants under drought and salt stress conditions. In addition, the expression of abiotic stress-responsive genes were significantly higher in OsMYB6 transgenic plants than that in wild-type plants under drought and salt stress conditions. These results indicate that OsMYB6 gene functions as a stress-responsive transcription factor which plays a positive regulatory role in response to drought and salt stress resistance, and may be used as a candidate gene for molecular breeding of salt-tolerant and drought-tolerant crop varieties

    Bioresorbable Material in Secondary Orbital Reconstruction Surgery

    No full text
    Purpose. To validate the potential of bioresorbable implantation in secondary revisional reconstruction after inadequate primary orbital fracture repair, with assessment of pre- and postoperative clinical characteristics and computed tomography image findings. Methods. A retrospective chart review was conducted on 16 consecutive patients treated for orbital fractures at Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, with inadequate prior surgeries between July 2010 and June 2017; patients who had suffered orbital blowout fractures had undergone primary surgeries elsewhere. Secondary repair of orbital fractures used bioresorbable material following unsatisfactory primary orbital repair. Patients’ demographics, degree of enophthalmos, ocular motility, diplopia test results, primary implants, and surgical complications were reviewed. Results. All 16 patients had primary orbital implants consisting of Medpor, titanium mesh, hydroxyapatite, or poly-L-lactide. Of the 16 cases, 14 had malpositioned implants posteriorly and two had implant infections. Findings following primary surgery included enophthalmos (12/16), diplopia (9/16), intraorbital abscess (2/16), and ocular movement pain (1/16). Mean preoperative enophthalmos was 3.8 ± 0.8 mm. Secondary reconstruction resulted in a mean reduction of enophthalmos by 3.1 ± 0.9 mm (P<0.01). Nine in ten patients experienced improvements in postoperative ocular motility and diplopia following secondary surgery. Intraorbital abscesses and eyeball movement-associated pain were cured. Conclusions. This study demonstrates that secondary orbital reconstruction of previously repaired orbital fractures using bioresorbable material can achieve excellent functional and aesthetic results with minimal complications. Bioresorbable material should be considered in secondary orbital reconstruction when clinically indicated

    A Digital Twin-Based Operation Status Monitoring System for Port Cranes

    No full text
    To address the problems of the lack of an online data simulation test environment, the poor openness of data collection, and the low degree of data visualization in the online control process of port cranes, an operation state monitoring system framework for port cranes based on digital twins is proposed. In this framework, the digital twin port crane is used as the core, and the multi-sensor data acquisition method, OPC UA information model, and plug-in programming method are combined to realize multi-source heterogeneous virtual and real data fusion. The digital twin crane monitoring system based on this framework can fulfil the following functions: crane historical operation process reproduction, control program simulation testing, synchronous mapping simulation, and remote control. In order to verify the proposed method, a digital twin-based physical platform for monitoring a rail-mounted gantry crane (RMGC) was built, in which a virtual test of anti-swing control and a digital twin monitoring experiment were carried out. The results show that the virtual RMGC can test the control algorithm and map the movement process of the physical RMGC, and the crane operation monitoring system has high real-time performance and good visualization effect. In addition, the remote control of the software platform is accurate and effective

    Dynamics Modeling and Characterization of Sunk Screw Connection Structure in Small Rockets

    No full text
    Bolted flange joints are widely used in engineering structures. Sunk screw connection structures commonly used in small rockets and missiles exhibit significant nonlinear characteristics when subjected to forces. In this article, a study of the dynamic characteristics of sunk screw connection is conducted. A 3-dof trilinear dynamic model is proposed, based on the study of the stiffness characteristics of the connection structure and considering contact nonlinearities. The connection surface is simplified as two axial trilinear springs and a lateral linear spring. The motion of the system can be divided into nine regions by the turning point of the trilinear springs. So that the motion of the system in each region can be completely resolved, the dynamic characteristics of the 3-dof trilinear system under impulse load and simple harmonic load are studied by means of semi-numerical analytical method. It is found that the response frequency of the system remains unchanged under a small impulse load, and the response can be obtained by approximate analytical expressions. When the impulse load is large, the response frequency is fluctuant, which reflects the sensitivity of the nonlinear system to the magnitude of impulse load. Under the simple harmonic excitation of bending moment, the response frequency curve of the system presents good single peak characteristics when the excitation amplitude is small. When the amplitude is large, the peak frequency of the system shifts, and the phenomenon of multi-peak resonance is shown in a certain range

    Characterization of Aquifer System and Groundwater Storage Change Due to South-to-North Water Diversion Project at Huairou Groundwater Reserve Site, Beijing, China, Using Geodetic and Hydrological Data

    No full text
    Groundwater overexploitation is a critical issue in the North China Plain (NCP), resulting in groundwater level decline and surface subsidence for the last half-century. This problem, however, has been greatly alleviated by the South-to-North Water Diversion (SNWD) Project since 2015. Monitoring of this process has been steadily improved in recent years using water level and geodetic observations. Here, we characterize the water storage change at the Huairou groundwater reserve site (HGRS) in Beijing due to the SNWD by combining Interferometric Synthetic Aperture Radar (InSAR) data of the Sentinel-1 satellites, continuous Global Positioning System (GPS) data, and well water level data observed during the same time. InSAR observations revealed subsidence up to ~400 mm in the Beijing plain but uplift at ~40 mm in the HGRS during 2015&ndash;2019, and more than 70% of the uplift occurred from October 2018 to January 2019. By integrating the most significant uplift deformation during October 2018 to January 2019 with water level observations at the same time, we estimated the storativity of the confined aquifer system at HGRS as 1.68&ndash;7.82&times;10&minus;3, weighing in the correction for effective stress and surface deformation for various situations. Based on the estimated aquifer storativity and the observed water level change in the unconfined and confined aquifer, the recharged water storage for the confined and unconfined aquifers was estimated as 1.20&ndash;1.39&times;107&nbsp;m3 and ~2.86&times;108&nbsp;m3 from 6 October 2018 to 22 January 2019, respectively, which is about 4% and 91% of the surface water recharge through river channels in the same period due to the SNWD Project. Our study demonstrates that integration of geodetic and hydrological data can provide crucial information for the assessment of groundwater circulation and assistance of groundwater management
    corecore