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ABSTRACT This study explores the combination of electroencephalogram (EEG) and functional
near-infrared spectroscopy (fNIRS) to enhance the decoding performance of motor imagery (MI) tasks
for brain-computer interface (BCI). The experiment involved measuring 64 channels of EEG signals and
20 channels of fNIRS signals simultaneously during a task of the left-right hand MI. By combining these
two types of signals, the study aimed to understand how feature fusion affected classification accuracy for
MI. The EEG signals were filtered into three bands (θ : 4-7 Hz, α: 8-13 Hz, β: 14-30 Hz), while the fNIRS
signals were filtered into 0.02-0.08Hz to improve signal quality for subsequent analysis. The common spatial
patterns (CSP) algorithm was utilized to extract features from both EEG and fNIRS signals. This allowed the
researchers to create a fused signal with both EEG and fNIRS features that could then be processed using
principal component analysis (PCA). Finally, the processed data was fed into a support vector machine
(SVM) classifier, which improved the mean accuracy rate of MI to 92.25%. By comparing the classification
accuracies obtained with fused and unfused segments of EEG and fNIRS signals, the study discovered that
fusing the signals significantly improved classification accuracy by 5%-10%. Furthermore, analyzing the
activated brain regions using fNIRS showed that the auxiliary motor cortex was significantly activated during
MI. These results demonstrate that hybrid signals with a fusion strategy can enhance the stability and fault
tolerance in BCI systems, making them valuable for practical applications.

INDEX TERMS Motor imagery, functional near-infrared spectroscopy, common spatial pattern, principal
components analysis, brain–computer interface.

I. INTRODUCTION
MI is a cognitive task that involves mentally imagining
oneself performing a physical movement without actually
moving. Combining MI with physical exercise has been
shown to be beneficial for learning new skills and improving
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sports performance [1]. Additionally, neuroscience research
has used MI as a paradigm to investigate brain activity prior
to the execution of action [2], [3]. MI-based brain-computer
interfaces (BCIs) have potential applications in restoring
motor movements for individuals who are paralyzed, dis-
abled, or have suffered a stroke [4], [5]. By utilizing MI to
control external devices, such as robotic arms or computer
cursors, individuals with motor disabilities can bypass their
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impaired neuromuscular system and interact with the world
around them in new ways. This could greatly improve their
quality of life and independence.

To create a BCI that is based onmeasuringMI, EEG signals
are commonly used to record the activity of cortical neurons
using scalp electrodes. This method has several advantages,
including its non-invasiveness, portability, and ability for
long-termmonitoring. [6], [7], [8]. Additionally, EEG signals
provide high temporal resolution, allowing for real-time mea-
surement ofMI which can be converted into control signals to
assist with motor movements [6], [9], [10]. However, a single
modal assessment of EEG induces some disadvantages such
as the non-intuitive representation of brain activity and low
spatial resolution. It is also extensively reported that better
BCI performance can be achieved with multimodal analysis
instead of standalone EEG signals [11], [12], [13], [14], [15].
On this basis, multimodal studies which assess both brain’s
electrical activity and hemodynamic activity attract much
interest. Hemodynamic activity can be recorded by position
emission tomography (PET), functional magnetic resonance
imaging (fMRI), and fNIRS, whereas only fMRI and fNIRS
can simultaneously do the recording with EEG devices.
Despite the availability of multiple recording modalities,
the combination of EEG-fNIRS is emerging as a promising
approach due to its low cost, portability, less discom-
fort, low interference, and good spatio-temporal resolution
[16], [17], [18].

However, simplymeasuring these signals isn’t enough - we
also need to extract useful information from them in order to
train our machine learning algorithms to recognize specific
patterns of brain activity. Different researchers have used
different methods for doing this. For example, Fazli et al.
recorded event-related desynchronizations (ERDs) and time
average fNIRS concentration changes duringMI whereas Ma
et al. adopted EEG power spectral densities and fNIRS sig-
nals amplitudes [12], [19]. In addition, the peak amplitude of
EEG and the mean values of oxygenated hemoglobins (HbO)
and deoxygenated hemoglobins (Hb) for fNIRS can also be
applied as the input to a linear discriminant analysis (LDA)
classifier [15]. Based on the aforementioned fused features,
although the MI classification accuracy or the movement
recognition accuracy can range between 65%-95%, which is
higher than the results derived from standalone EEGor fNIRS
features, feature extraction should be specified into different
segmentation in the time domain or frequency bands in the
frequency domain. For standalone EEG-based BCI, the CSP
algorithm is widely used for extracting spatial features by
constructing spatial filters for differentiating various kinds of
MI. However, searching for the best spatial filter still depends
on the information in the temporal domain, which makes it
to be sensitive to temporal noise [20]. Although a series of
methods such as common spatial spectrum pattern (CSSP)
or common sparse spectral spatial pattern (CSSSP) were
proposed, a bandpass filter that confines the signal in a certain
band can largely improve the effect of a CSP algorithm [21],
[22]. In this way, filter bank common spatial pattern (FBCSP)

with its variants was proposed, which can extract features in
different bands simultaneously [20], [23], [24], [25], [26].

In this study, we collected fNIRS and EEG signals of MI
of 15 healthy subjects at the same time. A new EEG fNIRS
multi-mode MI decoding method is implemented: the CSP
algorithm is used to extract two single-mode features respec-
tively, and PCA reconstructs the fused features into a new set
of features. Then support vector machine (SVM) is used as a
classifier to compare the classification effect before and after
feature fusion. In addition, we use NIRS statistical parametric
mapping (SPM) to generate brain-activated images based on
the MI contrast of left and right-hand. The rest of the paper
is organized as follows: Section II explains the methods we
used, including information about the subjects, data collec-
tion, experimental protocol, and data processing and analysis.
In Section III, we present the experimental results, and in
Section IV, we discuss these results. Finally, we provide a
conclusion in Section V.

II. METHODS
A. SUBJECTS
In this research, we used two datasets. The first dataset,
which we collected ourselves, consisted of twenty healthy
individuals from Wuyi University. There were 5 males and
15 females with an average age of 21.5 years old. All partici-
pants confirmed that they did not have any chronic physical or
mental illnesses. Before the experiment began, we asked the
participants to avoid consuming caffeine or alcohol for four
hours prior to the recording and to refrain from any strenuous
exercise. They also had to sign an informed consent form and
declare that they had never participated in an EEG experiment
before. The Institutional Review Committee of Jiangmen
Central Hospital approved this study. The second dataset,
Dataset B, is a collection of public EEG-fNIRS data sets [27].
It included 29 healthy subjects, 14 males and 15 females,
with an average age of 28.5 years old. Twenty-eight of these
subjects were right-handed, and one was left-handed.

B. EXPERIMENTAL PROTOCOL
In this experiment, we used a measuring cap that included
a 64-channel EEG system (SynAmps2 from Neuroscan in El
Paso, Texas, USA), as well as a 20-channel fNIRS acquisition
system called OXYMON MK III from Artinis in Nijmegen,
Netherlands (Figure 1A). The EEG acquisition system is
composed of 64 unipolar, 4 bipolar, and 2 high-level inputs,
with a total of 70 leads, whose sampling rate of each lead is
adapted to 1000 Hz in this experiment (Figure 1B) whereas
the fNIRS which emits two wavelengths of 762.0 nm and
845.5 nm with a sampling rate of 50 Hz. Two Intel (R) core
(TM) i5-7200u duo 2.7 GHz hosts (Vostro 3710 from Dell,
Texas, USA) are used to run fNIRS and EEG acquisition
systems, respectively.

Figure 1B and Figure 1C depict the arrangement of EEG
electrodes and fNIRS sources and detectors. Prior to record-
ing, we ensured that the impedance between the skin and
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electrodes was below 20 k�, and that the intensity of light
reception for fNIRS was above 200. Participants were seated
comfortably in a chair with their hands resting naturally on
their thighs. They were then instructed to perform a hand
motor imagery task based on random image stimuli, which
involved alternating between a 16-second rest state and an
8-second task state. (Figure 1D). The peak response of fNIRS
signals appears about 8 seconds after the stimulation onset
under the influence of hemodynamics [28]. Subjects were
asked to imagine corresponding hand movements based on
the images on the display. The image task was randomly
providedwith a total of 50 left-hand experiments and 50 right-
hand experiments. In terms of dataset B, the experimental
procedure is similar to ours whereas the distribution of elec-
trodes is different (Figure 1C) and a 2-second visual guidance
is added for each trial of MI (Figure 1E). For more details,
please refer to [27].

C. MULTIMODAL SIGNAL PROCESSING FOR MI
CLASSIFICATION
To achieve high accuracy of MI classification, multimodal
fused signals are processed following four steps:

Step 1: signal preprocessing
As MI feature representations are embedded by different

frequency bands of EEG signals (θ : 4-7 Hz, α: 8-13 Hz,
β: 14-30 Hz), sixth-order Butterworth band-pass filters
worked as filter bank (FB) were carried out for filter-
ing EEG signals into different bands A control group was
also proposed in which the EEG signals were filtered into
4-30 Hz. Furthermore, fNIRS signals were also filtered by
a sixth-order Butterworth band-pass filter. Currently, the
filtering of fNIRS use different high pass filter or low
pass [29], [30]. If bandpass filtering is chosen, the filtering
range will be selected based on the required noise frequency
reduction and different task frequencies [31], [32], [33], [34].
Considering that the task frequencies of our two datasets are
0.04 Hz (1/24) and 0.03 Hz (1/27-1/29), we have chosen
0.02 Hz-0.08 Hz bandpass filtering.

Step 2: CSP feature extraction algorithm
The CSP algorithm [35] was used to extract features from

multi-channel binary classification tasks. The principle of
the CSP algorithm is to maximize the covariance difference
between two types of data to achieve high discrimination
features. In this experiment, EEG signals were collected
from 64 channels whereas fNIRS signals were collected from
20 channels. Suppose a group of data with one hand is the
matrix, where i is the label for a certain hand (i= 1means left-
hand, i= 2means right-hand), j means the group number, and
the total number of groups on the left-hand and right-hand is n
(j ⩽ n). Then the covariance matrix corresponding to a single
group of stimuli is calculated as follows [21]:

Aij =

Dij
(
Dij
)T

trace
(
Dij
(
Dij
)T) . (1)

Then the covariance matrix of the overall data is the sum
of the average values of all single-group stimulus covariance
matrices of the two data types. Assuming that Al is the
average of the left-hand covariance and Ar is the average
of the right-hand covariance. after calculating the covariance
matrix of overall data, it is necessary to decompose Aall by
eigenvalue, which is calculated as follows [36]:

Aall = PBPT , (2)

where matrix B is a diagonal matrix composed of Aall eigen-
values and matrix P is the eigenvector corresponding to
matrix B. The eigenvalues are then arranged into descending
order, and a whitening matrix F is calculated as follows [35]:

F = (B)−
1
2 PT (3)

After obtaining the whitening matrix, the spatial filter will
be constructed. The whitening matrix F is used to process
the average value Gl of the left-hand data covariance and the
average value Gr of the right-hand data covariance, respec-
tively as follows [36]:

Gl = FAlFT , Gr = FArFT . (4)

By decomposing Gl and Gr , we can get:

Gl = ΓαlΓ
T , Gr = ΓαrΓ

T , (5)

where Γ Is the eigenvector, αl and αr are the eigenvalues
of Gl and Gr , respectively, and the summation of which is
equal to the identity matrix E = αl + αr . Therefore, when
the eigenvalue ofGl reaches the maximum, its corresponding
eigenvector Γ will minimize the eigenvalue αr of Gr , when
the eigenvalue of Gl reaches the minimize, its corresponding
eigenvector Γ will maximize the eigenvalue αr of Gr . Thus,
the rule can project the two types of signals to different
regions as much as possible for the initial classification pur-
pose. Finally, the corresponding projection matrix H can be
represented as follows [35]:

H = PTF . (6)

The filtered matrix �2m×t can be obtained from the origi-
nal dataDch×t through the spatial filterH , which is calculated
as follows [21]:

�2m×t = H2m×chDch×t . (7)

At this time, the matrix �2m×t is the result of Dch×t filter-
ing. Finally, �2m×t is calculated as follows [21]:

ξj = log

(
var

(
�j
)∑2m

j=1 var
(
�j
)) , j = 1, 2, . . . , 2m, (8)

where var
(
�j
)
is the variance of row j in �2m×t . ξj is the

feature vector we want to extract. In this paper, we choose
four pairs as the number of features [37].

Step 3: feature fusion
After data preprocessing, signals in frequency band

4∼30 Hz or separated three frequency bands of 4-7 Hz,
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FIGURE 1. Experimental setup for dataset A and dataset B. A, experiment
setup. B, fNIRS and EEG electrode distribution for dataset A. C, fNIRS and
EEG electrode distribution for dataset B, red and blue dots represent
near-infrared optobes sources and detectors respectively, and green dots
represent EEG electrodes, purple is the channel formed by near-infrared
optobes sources and detectors electrodes. D, flow chart of experimental
paradigm for dataset A. E, flow chart of experimental paradigm for
dataset B.

8-13 Hz, and14-30 Hz are obtained. The CSP is used to
extract features of these two types of signals, and 8 features
are extracted from each data band. Therefore, 8 and 24 fea-
tures are obtained from data preprocessing, respectively. Due
to fNIRS being divided into HbO and Hb signals, 8 features
of each signal are extracted by the CSP. This means that 24
(8 plus16) or 40 (24 plus16) features are obtained after the
fusion of EEG and fNIRS features.

Step 4: PCA feature selection and SVM classifier
In this paper, PCA recombines the original feature matrix

ξij obtained from CSP into a new set of unrelated comprehen-
sive feature matrices. Select a set of unit orthogonal bases P,
so that after the original feature is transformed to this set
of bases, the covariance between two fields is 0, while the
variance of the field is as large as possible. The covariance
matrix C can be calculated by the following formula [38]:

C =
1
m

ξijξ
T
ij , (9)

where C is also a symmetric matrix. ξij gets the matrix Y
after the base transformation of P, that is, Y= PX. Assuming
that the covariance matrix of Y isD, the relationship between

TABLE 1. Data and methods used for MI classification.

D and C is:

D =
1
m
YY T =

1
m

(PX) (PX)T = PCPT . (10)

Next, we diagonalize the covariance matrix C and arrange
the diagonal elements from big to small, then the first K lines
of P are the basis to be searched, where K is the dimension
of the new irrelevant comprehensive eigenmatrix. According
to the properties of a real symmetric matrix with n rows
and n columns can be found n unit orthogonal eigenvectors,
assuming that these n eigenvectors are e1, e2, . . . ,en. Then
a matrix L can be found L = (e1e2. . .en), orthogonal basis
P = LT , new uncorrelated comprehensive characteristic
matrix [38]:

Y = Pξij. (11)

The new feature group is linearly uncorrelated, so in the-
ory, it will produce good classification results. The principal
component score is the cumulative contribution rate obtained
through covariance. Our approach for generating a feature
subset involves several steps. First, we identify the principal
component with the highest score and retain it as a feature.
Then, we add the principal component with the next highest
score to our feature set and continue this process until we’ve
included all of the principal components.

Once we have selected our subset of PCA features, we pass
them to an SVM classifier [39] for classification. To ensure
the accuracy of the classifier, we use tenfold cross-validation.
We terminate the process when we find the feature subset that
yields the highest classification accuracy. Data and methods
used for MI classification comparison are shown in Table 1.

D. BRAIN ACTIVATION
The activation results of brain regions in this experiment
were obtained using NIRS SPM (KAIST bioimaging signal
processing laboratory in daejeon, south korea). It uses the
modified bill lambert law (MBLL) based on the generalized
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linear model (GLM) [40]:

od = εC · DPF · d + G, (12)

optical density (od) refers to how much light is blocked
or weakened as it passes through a substance. The amount
of attenuation is affected by the absorption coefficient ε,
the concentration of the substance (C), the differential path
length factor (DPF), the linear distance between the fNIRS
light source and detector (d), and an unknown factor (G) that
accounts for the influence of brain tissue on near-infrared
light absorption, scattering, and the shape of the light prop-
agation path. To eliminate this unknown factor, we calculate
the starting and ending concentrations of the substance and
then subtract them from each other. This gives us the changes
in both substance concentration and light attenuation, which
we can express as 1 od:

1od = ε1C · DPF · d, (13)

the near-infrared light with HbO and Hb contents can be
obtained at the incident wavelength λ1 and reflection wave-
length λ2, respectively [40]:{

1odλ1 = ε
λ1
HbO1 [HbO]DPFd + ε

λ1
Hb1 [Hb] · DPF · d

1odλ2 = ε
λ2
HbO1 [HbO]DPFd + ε

λ2
Hb1 [Hb] · DPF · d,

(14)

where 1odλ1 is the attenuation of light with an incident
wavelength of λ1, 1odλ2 is the attenuation of light with
a reflection wavelength of λ2, and ε

λx
HbX is the absorption

coefficient of HbO or Hb at the corresponding wavelength.
Further calculation can be obtained from [40]:

1 [HbO] =
ε
λ2
HbO1odλ1 − ε

λ1
Hb1odλ2

DPF · d(ελ1
HbOε

λ2
Hb − ε

λ2
HbOε

λ1
Hb)

1 [Hb] =
ε
λ1
HbO1odλ2 − ε

λ2
Hb1odλ1

DPF · d(ελ1
HbOε

λ2
Hb − ε

λ2
HbOε

λ1
Hb)

,

(15)

where 1 [HbX] is the change in HbO or Hb concentration.
By setting a comparison matrix, the activation area of the

left brain relative to the right brain can be obtained, while the
activation area of the right brain equivalent to the left brain
can be obtained.

III. EXPERIMENTAL RESULT
There is a clear relationship between the number of features
selected in PCA and the corresponding principal component
value (Figure 2). Specifically, as the number of selected
principal components increases, the amount of information
retained from the original feature group also increases.

In terms of the statistics on the number of principal compo-
nents selected by 20 subjects (Figure 3), we can observe that
only a small percentage of subjects had principal components
in the range of 1-10 or 31-40. This indicates that either too
few or too many principal components may not be ideal for
capturing the relevant information from the original feature
group.

Interestingly, a significant proportion of subjects, 65%, had
principal components in the range of 11-20. This suggests
that this range of principal components may be optimal for
retaining the relevant information while also reducing the
dimensionality of the feature space.

Overall, these findings highlight the importance of care-
fully selecting the number of principal components in PCA to
ensure that the relevant information is retainedwhile avoiding
overfitting or underfitting the data.

To verify the effectiveness of our PCA feature selection,
we used SVM and KNN [42] classifiers to compare the
classification accuracy before and after PCA (Figure 4). It can
be seen that in the KNN classifier, the average classification
accuracy after PCA (89.50± 7.1%) is higher than the average
classification accuracy of simple fusion (61.00 ± 19.6%),
and the average classification accuracy of FB-PCA (91.85 ±

4.2%) is higher than the average classification accuracy of
PCA.

To illustrate the effectiveness of the hybrid feature to MI
decoding, we compare the classification accuracy with sep-
arated EEG signals, fNIRS signals and the PCA (Figure 5).
Bandpass filters with 4-30 Hz and 0.02-0.08 Hz are exerted
on EEG signals and fNIRS signals respectively and the fused
feature is also processed with such two filters. It can be
seen that after feature fusion, the mean classification accu-
racy of MI for all subjects with multimodal EEG-fNIRS
(88.00 ± 6.16%) is significantly higher than that with inde-
pendent EEG signals (76.00 ± 8.46%) or independent fNIRS
signals (71.25 ± 8.56%).
To show the capability of FB and PCA in EEG data prepro-

cessing for MI decoding, we compare the mean classification
accuracy with three fusion methods (Figure 5). To extract
more subtle features within EEG signals, three bandpass
filters (4-7 Hz, 8-13 Hz, 14-30 Hz) are applied respectively
for EEG signals. It can be seen that the mean classification
accuracy with the FB-PCA method for all subjects (92. 25 ±

4.99%) is significantly higher than that with the mere PCA
method (88.00 ± 6.16%) and simple fusion method (55.25 ±

16.69%).
To verify the generalization of the preprocessing method,

we use the same method to process both EEG and fNIRS sig-
nals in dataset B [27].We compare the classification accuracy
of MI decoding with separated EEG signals, fNIRS signals
and a hybrid one deriving from dataset B (Figure 5). It can be
seen that after feature fusion, themean classification accuracy
of MI for all subjects with multimodal EEG-fNIRS (96.90 ±

1.59%) is significantly higher than that with separated EEG
signals (92.24 ± 1.90%) or fNIRS signals (53.56 ± 10.59%).
Furthermore, the classification accuracy can also be improved
by adding FB and PCA in data preprocessing for dataset
B which is also shown in Figure 5. To better compare the
classification effects of the single mode and the three fusion
methods, we calculated the F1-score of the five classification
methods. The experimental results are shown in Table 2. It can
be seen that the F1-score of FB-PCA (73.96%) is significantly
higher than that of single mode and the other two fusion

VOLUME 11, 2023 65281



T. Xu et al.: Motor Imagery Decoding Enhancement Based on Hybrid EEG-fNIRS Signals

FIGURE 2. The relationship between the characteristic values of the subjects and the final selected principal component score, with the x-axis
representing the number of principal components selected and their corresponding numbers, and the y-axis representing the corresponding
characteristic values.

FIGURE 3. Distribution map of the number of principal components of
subjects.

methods, and PCA (73.24%) is also higher than the F1-score
of simple fusion (32.63%).

To further support our classification results, we use fNIRS
signals from dataset A (Figure 6A) and dataset B (Figure 6B)
to study the activation of brain regions during MI. The
active areas of MI with dataset A are channels 12, 17 and
18 (right premotor cortex and supplementary motor cortex,
primary motor cortex) with MI of the left hand (left figure).
In contrast, the right side figure shows that channels 2,
3 and 8 (left premotor and supplementary motor cortex,
dorsolateral prefrontal cortex) are activated by right-hand
MI. However, although the left-right hand MI is activated
by the contralateral brain region, the subregion of left-right
hand MI is different for the two datasets. For dataset B,
the left side figure shows that channels 13, 16, 18 (right
dorsolateral prefrontal cortex, primary motor cortex, premo-
tor and supplementary motor cortex of the right brain) are
activated by the left-hand MI, and the right side figure shows
that channel 1, 2, 4, 5 (left dorsolateral prefrontal cortex,
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FIGURE 4. The average classification accuracy of PCA selected features in
SVM and KNN classifiers.

FIGURE 5. Classification accuracy of EEG, fNIRS, EEG, Original, PCA and
FB-PCA and Hybrid in dataset A and dataset B.

the premotor and supplementary motor cortex of the left
brain) are activated by the right hand MI. The results showed
that there were significant differences in the activated brain
regions when the subjects imagined the left- and right-hand
movements.

The experimental results of this study are consistent with
the existing research results on MI [43]. The auxiliary motor
areas remain activated throughout the process of motor imag-
ination, while the left and right brain areas are asymmetric,
which may be related to the asymmetry of the brain [44].

IV. DISCUSSION
This study examined how the brain reacts when performing
left-right hand motor imagery, using both EEG and fNIRS
data to measure cortical activation. The researchers collected
both types of signals at the same time, as simultaneous mul-
timodal recording of brain activity has become increasingly
popular in recent years, given that different recording meth-
ods reveal various mechanisms of brain function. [12], [14],
[37]. For instance, EEG signals reflect assembled neural
electrophysiology, so they have a high temporal resolution,
as the firing rate of a neuron’s burst state can exceed 200 Hz.

TABLE 2. Average accuracy and standard deviation before and after
feature fusion AND F1-SCORE.

FIGURE 6. Brain activation results. A, The activation area of left-hand
motor imagination and that of right-hand motor imagination in dataset A
(from left to right), p < 0.05. B, The activation area of left-hand motor
imagination and that of right-hand motor imagination in dataset B (from
left to right), p < 0.05.

On the other hand, fMRI uses blood-oxygen-level-dependent
imaging (BOLD) to detect hemodynamic processes, allow-
ing for measurements of HbO and Hb differences based on
differential magnetic susceptibility. This approach provides a
relatively high spatial resolution but lower temporal resolu-
tion since it is sensitive only to the difference between two
brain states. Similarly, fNIRS uses near-infrared light to esti-
mate spectroscopic measurements of HbO and Hb variation
at the cortical level. Combining EEG and fNIRS is ideal for
multimodal BCIs since they are portable and require electrode
caps whose density can be adjusted according to the number
of leads.
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In this study, the mean classification accuracy of the
left-right MI was improved with simultaneous EEG-fNIRS
recordings (92.25 ± 4.99%) compared to standalone EEG
or fNIRS signals (EEG: 76.00 ± 8.46%, fNIRS: 71.25 ±

8.56%). Such results are in accordance with others’ findings
that a 5% to 24.4% improvement of BCI classification accu-
racy can be achieved for fused EEG-fNIRS signals in MI
tasks [12], [45], [46], [47]. The main reason for the classifica-
tion accuracy improvement attributes to the complementary
features of these two modalities considering the volume of
information, the frequency domain of signals or the spatial
distribution electrodes. In addition, EEG-fNIRS-based mul-
timodal BCI systems for other tasks also outperform those
single-modal BCI systems. However, Ge et al. proposed a
similar EEG-fNIRS multimodal system with fewer leads for
MI classification [45]. Three EEG channels and six pairs of
fNIRS channels are selected for the MI task and the mean
accuracy can reach 81.2%, outperforming that with a large
number of electrodes [48], [49], [50], [51]. Such a compar-
ison implies that the redundancy of signals may contribute
to the reduction of classification accuracy. To avoid feature
redundancy, we applied PCA to regroup the original features
with specific correlations obtained from the CSP into a new
group of unrelated features and the classification accuracy
can be as high as 92.25 ± 4.99%.
In addition, Chiarelli et al. also proposed an EEG-

fNIRS-based multimodal BCI system for MI tasks but
with a deep neural network (DNN) classifier [13]. They
found the performance of the DNN classifier is better
than that of an SVM one. Hemoglobin change and the
event-related synchronizations/event-related desynchroniza-
tions (ERSs/ERDs) valueswere directly fed toDNNclassifier
without any preprocessing. Such a result manifests the impor-
tance of feature redundancy during the preprocessing that
augments the ability of the consequent classifier.

The hybrid EEG-fNIRS BCI can also improve the classi-
fication accuracy of brain states instead of a task in a certain
state albeit a limited number of channels were applied. For
example, Kwon et al. proposed a hybrid EEG-fNIRS BCI
system for distinguishing brain states of mental arithmetic,
right-hand MI and an idle state [52]. Compared with the
left-right hand MI task, telling the discrimination of brain
states seems rougher and the difference is more evident as
the prefrontal and parietal cortex are responsible for arith-
metic tasks whereas the cerebral dorsal prefrontal cortex is
responsible for left-right MI task [53], [54].

In this study, the CSP is used to extract the features from
both EEG signals and fNIRS signals according to the fre-
quency bands of EEG and the concentrations of HbO and Hb,
respectively. In this way, the proportion of the fused features
is deterministic and the contribution of these features to the
BCI is not clear although the comparison of classification
accuracy with unimodal is completed. Hosin et al. proposed
a notion of fusion level of EEG/fNIRS in the multimodal
BCI for MI classification. They find that the fused features

with a low proportion of EEG features achieve a high level
of classification accuracy which is in contradiction with our
results as the classification accuracy for mere EEG signals
is better than that with unimodal features of fNIRS [55].
Such a contradiction may be related to the preprocessing
methods. However, making sure the proportion of features
in the multimodal BCI can not only benefit the BCI design,
but also it can be advantageous to the exploring of neural
mechanisms in MI.

Research has found that there is an internal connection
between the brain and the left and right hands, and this
connection exhibits asymmetry [56]. For those who are right-
handed, it is generally the left hemisphere of the brain that
is used for motor performance. Some studies suggested that
the asymmetry of the motor cortex may be due to right-hand
preference [56], [57]. Other studies show that the left-hand
movements of subjects are more affected by the visual envi-
ronment without considering handedness, which strongly
suggests the complex relationship between brain asymmetry
and handedness [58], [59]. In fact, the motor cortex is also
activated during voluntary exercise and when observing other
behavior [60], [61], [62], [63], [64], [65]. Brain asymmetry
is also related to the proficiency of habitual hands, which is
the result of the interaction between neural connections and
molecular regulation [66]. Brain asymmetry is also common
in other fields, such as hemispheric asymmetry, which is
used to assess the efficacy of treating depression [67]. The
power spectral density topographic map of EEG also has
asymmetry [68]. The motor function of the human body
interacts with vision, hearing, language and memory. There-
fore, the asymmetry between left and right brain regions in
our activation results is the result of the interaction between
the subject’s left-hand and right-hand proficiency and other
cognitive processes.

To demonstrate the effectiveness of our approach, we com-
pared our results with those of other studies conducted in
the past three years (Table 3). Our findings showed that the
classification accuracy achieved throughmultimodal analysis
was higher than that achieved through analysis of EEG or
fNIRS signals alone [69], [70], [71], [72], [73], [74]. This
could be attributed to the fact that the best results obtained
from the single-mode analysis are already included in the
optimal results from the multimodal analysis. Jian et al. [75]
used the independent decision path fusion (IDPF) method
to improve the average classification accuracy to 70.32 ±

8.74% across four types of classification problems in their
EEG-fNIRS joint study. Pac et al. [77] used the pearson cor-
relation coefficient based feature selection (PCCFS) strategy
to classify EEG features derived from both EEG and fNIRS,
which increased the classification accuracy from 65.52% and
58.62% achieved individually to 79.31%. Kwak et al. [78]
used fNIRS to guide attention networks (FGANet), and
by combining the two signals, they improved the average
accuracy to 78.59 ± 8.86%. Arshia et al. [79] conducted
integrated vector phase analysis (VPA) based on EEG and
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TABLE 3. Comparison of research in the past three years.

fNIRS. The classification accuracy of support vector machine
(SVM), convolutional neural network (CNN), deep neu-
ral network (DNN), and VPA (with dual threshold circles)
reached 82%, 89%, 87%, and 86%, respectively. Moreover,
Kaga et al. [76] used EEG to measure the latency and ampli-
tude of NoGo-N2 and NoGo/Go-P3 tasks, and found that
Oxy-HB in the right frontal cortex of children with ADHD
was significantly reduced. Our brain activation study also
yielded similar results, as significant changes in HbO and Hb
signals were observed during motor imagery in both left- and
right-brain regions. This supports the separability of our data
and the reliability of our classification results.

V. CONCLUSION
In this paper, we propose a left-right hand MI decoding
method based on multimodal signals. A combined prepro-
cessing method considering CSP, FB and PCA provides
high discrimination features for a SVM classifier so that the
classification accuracy can reach more than 90% for both
self-collected and public datasets. Such a result manifests
that the combined preprocessing method can be a paradigm
for multimodal BCI. In addition, we also used NIRS-SPM
to show the activated areas during the MI experiment which
is consistent with a large number of fMRI studies. From
the perspective of activation regions, there are significant
differences between left-hand and right-hand MI activation

regions, which also supports our classification results from
the basic neural basis of the human brain. It also shows that
the premotor cortex and supplementarymotor cortex, primary
motor cortex play an important role in MI.
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