18 research outputs found

    Optical Binding Force between Two Chiral Spheres by an Incident On-axis Gaussian Beam

    Get PDF
    AbstractAccording to the electromagnetic scattering of two spheres, the incident on-axis Gaussian beam is expanded in terms of spherical vector wave functions (SVWFs), and the beam shape coefficients are obtained by applying the localized approximation method. Using the addition theorem, the interaction scattering fields of two chiral spheres and the internal fields are also expanded in terms of SVWFs. Based on the continuous tangential boundary conditions, the scattered field coefficients are derived analytically. Utilizing the Maxwell's stress tensor integration technique, the optical binding force between two chiral spheres is formulated explicitly. Numerical simulations of the binding force are carried out. The effects of the beam width and the radius of the sphere on the force are analyzed. The numerical results are compared with the results from references

    Roles of Mitochondria in Oral Squamous Cell Carcinoma Therapy: Friend or Foe?

    No full text
    Oral squamous cell carcinoma (OSCC) therapy is unsatisfactory, and the prevalence of the disease is increasing. The role of mitochondria in OSCC therapy has recently attracted increasing attention, however, many mechanisms remain unclear. Therefore, we elaborate upon relative studies in this review to achieve a better therapeutic effect of OSCC treatment in the future. Interestingly, we found that mitochondria not only contribute to OSCC therapy but also promote resistance, and targeting the mitochondria of OSCC via nanoparticles is a promising way to treat OSCC

    Lactate-driven type I collagen deposition facilitates cancer stem cell-like phenotype of head and neck squamous cell carcinoma

    No full text
    Summary: Lactate is known to play a crucial role in the progression of malignancies. However, its mechanism in regulating the malignant phenotype of head and neck squamous cell carcinoma (HNSCC) remains unclear. This study found that lactate increases cancer stem cell (CSC) characteristics of HNSCC by influencing the deposition of type I collagen (Col I). Lactate promotes Col I deposition through two distinct pathways. One is to convert lactate to pyruvate, a substrate for Col I hydroxylation. The other is the activation of HIF1-α and P4HA1, the latter being a rate-limiting enzyme for Col I synthesis. Inhibition of these two pathways effectively counteracts lactate-induced enhanced cell stemness. Further studies revealed that Col I affects CSC properties by regulating cell cycle dynamics. In conclusion, our research proposes that lactate-driven Col I deposition is essential for the acquisition of CSC properties, and lactate-centric Col I deposition may be an effective target for CSCs

    Mitophagy-Mediated Tumor Dormancy Protects Cancer Cells from Chemotherapy

    No full text
    Despite obvious tumor shrinkage, relapse after chemotherapy remains a main cause of cancer-related mortality, indicating that a subpopulation of cancer cells acquires chemoresistance and lingers after treatment. However, the mechanism involved in the emergence of chemoresistant cells remains largely unknown. Here, we demonstrate that the degradation of mitochondria via autophagy leads to a dormant state in a subpopulation of cancer cells and confers on them resistance to lethal cisplatin (DDP) exposure. The surviving DDP-resistant cells (hereafter, DRCs) have a lower metabolic rate but a stronger potential malignant potential. In the absence of DDP, these DRCs exhibit an ever-increasing self-renewal ability and heightened tumorigenicity. The combination of chloroquine and DDP exerts potent tumor-suppressive effects. In summary, our findings illuminate the mechanism between mitophagy and tumor dormancy and prove that targeting mitophagy might be a promising approach for overcoming chemoresistance in head and neck squamous cell carcinoma (HNSCC)

    OSCC Exosomes Regulate miR-210-3p Targeting EFNA3 to Promote Oral Cancer Angiogenesis through the PI3K/AKT Pathway

    No full text
    This study is aimed at determining how oral squamous cell carcinoma (OSCC) regulates the angiogenesis of HUVECs through miR-210-3p expression and exploring the relationship among miR-210-3p, its target protein, and the possible mechanism of angiogenesis regulation. miR-210-3p expression was detected in OSCC tissues and juxta cancerous tissues (JCT), and the relationship among miR-210-3p, microvessel density (MVD), and histopathologic features was analyzed. A conditioned medium (CM) of the OSCC cell line CAL27 was collected to stimulate human umbilical vein endothelial cells (HUVECs), and the miR-210-3p levels and tube formation capability of HUVECs were measured. The target protein level of miR-210-3p was altered; then, PI3K/AKT pathway activation in HUVECs was detected. miR-210-3p was tested in exosomes separated from CAL27 CM, and the transfer of miR-210-3p from OSCC exosomes to HUVECs was verified. Then, we found that the OSCC tissues had higher miR-210-3p levels than the JCT, and miR-210-3p level was positively correlated with MVD and tumor grade. CAL27 CM was able to elevate miR-210-3p levels in HUVECs and promoted tube formation. EFNA3 was the target gene of miR-210-3p, and ephrinA3 protein level was able to influence the migration and proliferation of HUVECs. The levels of phosphorylated AKT in the HUVECs increased when ephrinA3 was downregulated, and the upregulation of ephrinA3 resulted in the suppression of the PI3K/AKT pathway. miR-210-3p was detected in exosomes isolated from the CM of CAL27 cells, and miR-210-3p level in the HUVECs was elevated after absorbing the OSCC exosomes. In conclusion, miR-210-3p was more overexpressed in OSCC tissues than in the JCT. The exosomes secreted by OSCC cells were able to upregulate miR-210-3p expression and reduce ephrinA3 expression in HUVECs and promoted tube formation through the PI3K/AKT signaling pathway

    Advanced progress of spatial metabolomics in head and neck cancer research

    No full text
    Head and neck cancer ranks as the sixth most prevalent malignancy, constituting 5 % of all cancer cases. Its inconspicuous onset often leads to advanced stage diagnoses, prompting the need for early detection to enhance patient prognosis. Currently, research into early diagnostic markers relies predominantly on genomics, proteomics, transcriptomics, and other methods, which, unfortunately, necessitate tumor tissue homogenization, resulting in the loss of temporal and spatial information. Emerging as a recent addition to the omics toolkit, spatial metabolomics stands out. This method conducts in situ mass spectrometry analyses on fresh tissue specimens while effectively preserving their spatiotemporal information. The utilization of spatial metabolomics in life science research offers distinct advantages. This article comprehensively reviews the progress of spatial metabolomics in head and neck cancer research, encompassing insights into cancer cell metabolic reprogramming. Various mass spectrometry imaging techniques, such as secondary ion mass spectrometry, stroma-assisted laser desorption/ionization, and desorption electrospray ionization, enable in situ metabolite analysis for head and neck cancer. Finally, significant emphasis is placed on the application of presently available techniques for early diagnosis, margin assessment, and prognosis of head and neck cancer

    Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway

    No full text
    Abstract Background Cancer-associated fibroblasts (CAFs) have been widely reported to promote tumor angiogenesis. However, the underlying mechanisms of the proangiogenic switch of CAFs remain poorly understood. This study aims to clarify the mechanisms underlying the proangiogenic switch of CAFs. Methods NIH/3T3 cells were treated with B16 and B16F10-derived exosomes. Then the CAFs markers and proangiogenic factors were detected by RT-PCR and Western blot. CCK-8 assay, transwell migration assay, tube formation assay, and in vivo Matrigel plug assay were conducted to determine the proangiogenic capability of CAFs. Western blot and AG490 were used to investigate the role of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway in the proangiogenic switch of CAFs. Bioinformatics analysis, luciferase reporter assay, microRNA mimic and inhibitor, and xenograft models were used to investigate the role of mmu-miR-155-5p (miR-155) in the proangiogenic switch of CAFs. Results In this study, we show that melanoma cell-secreted exosomes can induce reprogramming of fibroblasts into CAFs and that exosomal miR-155 can trigger the proangiogenic switch of CAFs. Mechanistically exosomal miR-155 can be delivered into fibroblasts and promote the expression of proangiogenic factors, including vascular endothelial growth factor A (VEGFa), fibroblast growth factor 2 (FGF2), and matrix metalloproteinase 9 (MMP9), by directly targeting suppressor of cytokine signaling 1 (SOCS1). Downregulation of SOCS1 activates JAK2/STAT3 signaling pathway and elevates the expression levels of VEGFa, FGF2, and MMP9 in fibroblasts. Treatment with exosomes containing overexpressed miR-155 can promote angiogenesis, and the reduction of miR-155 in melanoma cell-secreted exosomes alleviates angiogenesis in vitro and in vivo. Conclusions These results demonstrate that by promoting the expression of proangiogenic factors in recipient fibroblasts via SOCS1/JAK2/STAT3 signaling pathway, melanoma cell-secreted exosomal miR-155 can induce the proangiogenic switch of CAFs. Although tumor angiogenesis is modulated by various factors, exosomal miR-155 may be a potential target for controlling melanoma angiogenesis and used to set up novel strategies to treat melanoma
    corecore