104 research outputs found
In Vivo Imaging of Schistosomes to Assess Disease Burden Using Positron Emission Tomography (PET)
Schistosomiasis is a well studied parasitic disease that is far from eradication despite the development of an effective treatment. The lack of an efficacious vaccine and high re-infection rates after treatment are major factors in its intractable worldwide prevalence. A non-invasive imaging technique like positron emission tomography (PET) could give clinicians and researchers a quantitative and visual tool to characterize the worm burden in infected individuals, determine the efficacy of a candidate vaccine, and provide information about parasite migration patterns and basic biology. We are therefore proposing the novel application of PET imaging to schistosomiasis in order to advance the management and research of this infectious disease. Herein, we demonstrate that schistosome parasites take up 2-deoxy-2[18F]fluoro-D-glucose (FDG). FDG uptake in regions adjacent to or within the liver linearly correlate with the worm number in infected mice, but the correlation was stronger in mice with high infection burdens. We anticipate that this research is a first step in the development of more specific radiotracers optimized for schistosomiasis, and will eventually translate to human studies
Elastic Modulus of Polycrystalline Halide Perovskite Thin Films on Substrates
Using an innovative combination of multi beam-optical sensor (MOSS) curvature
and X-ray diffraction (XRD) techniques, the Young's modulus, E, of
polycrystalline MAPbI3 metal-halide perovskite (MHP) thin films attached to two
different types of substrates (SiO2 and Si) is measured to be in the 6.1-6.2
GPa range. This is significantly lower than that of corresponding MAPbI3
single-crystals, which offers a new avenue of tuning E of MHP thin films via
microstructural tailoring for influencing the mechanical reliability of
perovskite solar cells (PSCs).Comment: 9 pages, 1 figure, supplementary information (1 figure, 1 table
Intravenous Delivery of siRNA Targeting CD47 Effectively Inhibits Melanoma Tumor Growth and Lung Metastasis
CD47 is a “self marker” that is usually overexpressed on the surface of cancer cells to enable them to escape immunosurveillance. Recognition of CD47 by its receptor, signal regulatory protein α (SIRPα), which is expressed in the macrophages, inhibits phagocytic destruction of cancer cells by the macrophages. In this study, we have first shown that clinical isolates of human melanoma significantly upregulate CD47, possibly as a mechanism to defend themselves against the macrophages. We then exploited RNA interference (RNAi) technology to test the hypothesis that knocking down CD47 in the tumor cells will render them targets for macrophage destruction; hence, creating a novel anti-cancer therapy. Anti-CD47 siRNA was encapsulated in a liposome-protamine-hyaluronic acid (LPH) nanoparticle (NP) formulation to address the challenge of targeted delivery of siRNA-based therapeutics in vivo. Efficient silencing of CD47 in tumor tissues with systemic administration of LPH(CD47) also significantly inhibited the growth of melanoma tumors. In a lung metastasis model, LPH(CD47) efficiently inhibited lung metastasis to about 27% of the untreated control. Moreover, no hematopoietic toxicity was observed in the animals that received multiple doses of LPH(CD47). Our findings indicate CD47 as a potential prognostic marker for melanoma development as well as a target for therapeutic intervention with RNAi-based nanomedicines
Performance of ICRISAT pigeonpeas in China
Results of the experiments on pigeon pea biomass production conducted in Guangxi Province, and on soil conservation potential of pigeon pea conducted in Kunming, China, are presented and discussed. Tabulated data on the performance of short-duration determinate ICRISAT pigeon pea lines tested in Guangzhou, China, during 1998 is given
Pigeonpea: A potential fodder crop for Guangxi province of China
The progress of pigeon pea as a major fodder crop in Guangxi, China is reviewed. The potential of pigeon pea as a source of good quality fodder for the growing livestock industry in the province is discussed
Epidemiology and cost analysis for patients with oral cancer in a university hospital in China
<p>Abstract</p> <p>Background</p> <p>Although several studies have reported the direct cost of oral cancer (OC), little research has invested the factors that could influence the costs of OC patient. This study analyzes the epidemiological characteristics and the direct cost of OC. More specifically, the study examines the relationship between patients' medical costs and influencing factors of epidemiology.</p> <p>Methods</p> <p>All patients encountered from January 2007 to December 2007 at the School of Stomatology of the Fourth Military Medical University (FMMU) in China with diagnosis of oral cancer have been selected. Medical hospitalization days (MHD) and cost per patient (CPP) of the samples have been calculated for different patient groups, and the results have been compared using statistical methods.</p> <p>Results</p> <p>A total of 456 oral cancer patients have been selected in this study. The epidemical characteristics are as follows: female/male 176/280; squamous cell carcinoma (SCC)/adenocarcinoma/sarcoma/lymphoma/other types 246/127/40/27/16; stage I/II/III/IV 90/148/103/115; smoker/non-smoker 136/320; rural/urban patients 82/374. Of all the patients, 82.24% were over 40 years of age. Rural patients were significantly younger than urban patients. SCC was the majority histology in older patients, while sarcoma was more common in younger patients. 372 of the patients received treatment and 84 gave up any treatment after diagnosis. Treatment cost accounted for majority of the payment. The CPP and MHD of patients in late clinical stage were higher than that of patient in early stage.</p> <p>Conclusion</p> <p>Gender, smoking habit and age older than 40 years are the epidemiological risk factors for oral cancer. Lack of medicare, smoking habit, late clinical stage and SCC are the high economic factors for patient medical cost.</p
A Dominant X-Linked QTL Regulating Pubertal Timing in Mice Found by Whole Genome Scanning and Modified Interval-Specific Congenic Strain Analysis
BACKGROUND: Pubertal timing in mammals is triggered by reactivation of the hypothalamic-pituitary-gonadal (HPG) axis and modulated by both genetic and environmental factors. Strain-dependent differences in vaginal opening among inbred mouse strains suggest that genetic background contribute significantly to the puberty timing, although the exact mechanism remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: We performed a genome-wide scanning for linkage in reciprocal crosses between two strains, C3H/HeJ (C3H) and C57BL6/J (B6), which differed significantly in the pubertal timing. Vaginal opening (VO) was used to characterize pubertal timing in female mice, and the age at VO of all female mice (two parental strains, F1 and F2 progeny) was recorded. A genome-wide search was performed in 260 phenotypically extreme F2 mice out of 464 female progeny of the F1 intercrosses to identify quantitative trait loci (QTLs) controlling this trait. A QTL significantly associated was mapped to the DXMit166 marker (15.5 cM, LOD = 3.86, p<0.01) in the reciprocal cross population (C3HB6F2). This QTL contributed 2.1 days to the timing of VO, which accounted for 32.31% of the difference between the original strains. Further study showed that the QTL was B6-dominant and explained 10.5% of variation to this trait with a power of 99.4% at an alpha level of 0.05.The location of the significant ChrX QTL found by genome scanning was then fine-mapped to a region of approximately 2.5 cM between marker DXMit68 and rs29053133 by generating and phenotyping a panel of 10 modified interval-specific congenic strains (mISCSs). CONCLUSIONS/SIGNIFICANCE: Such findings in our study lay a foundation for positional cloning of genes regulating the timing of puberty, and also reveal the fact that chromosome X (the sex chromosome) does carry gene(s) which take part in the regulative pathway of the pubertal timing in mice
- …