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Abstract
In this paper, the robust finite-timeH∞ filter design problem for uncertain systems
subject to missing measurements is investigated. It is assumed that the system is
subject to the norm-bounded uncertainties and the measurements of the output are
intermittent. For the model of the missing measurements, the Bernoulli process is
adopted. A full-order filter is proposed to estimate the signal which can track the
signal to be estimated. By augmenting the system vector, a stochastic augmented
system is obtained. Based on the analysis of the robust stochastic finite-time stability
and theH∞ performance, the filter design method is obtained. The filter parameters
can be calculated by solving a sequence of linear matrix inequalities. Finally, a
numerical example is used to show the design procedure and the effectiveness of the
proposed design approach.

Keywords: finite-time stability; robust filtering;H∞ filtering; linear matrix
inequalities

1 Introduction
In the modern control, a filter plays an important role since the filter can be used to es-
timate the unavailable state and filter the external noise. Therefore, the filter design has
been a hot research topic since the original development of the modern control. It is well
known that the Kalman filter is an effective way to estimate state. However, the Kalman
filter requires the preliminary knowledge of the spectrum of the noise and the precise sys-
tem model. However, in many practical cases, these requirements cannot be satisfied. In
these cases, the H∞ filter is a great alternative. The H∞ filter, which was originally pro-
posed in the late s [], has attracted a lot of attention due to the fact that the filter
can be easily utilized to deal with the uncertainties and the attenuation effect from the
external input to the estimated signal [–].
In the state-spacemodel, it is always assumed that systemmatrices are precise. However,

in the real world, these matrices are unavoidable to contain uncertainties which can result
from the modeling error or variations of the system parameters. During the past  years,
the norm-bounded uncertainties have been widely adopted in the system modeling for
practical plants, such as the works in [–]. In [], the norm-bounded uncertainties
were used in the time-delay linear systems.While in [], the norm-bounded uncertainties
were used in the neutral systems.
In the literature, most of the works on the H∞ filtering were based on the Lyapunov

asymptotic stability. However, in many practical applications, the asymptotic stability is
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not enough if large values of the state are not acceptable, see [, –] and the references
therein. Although the finite-time stability was early proposed in s [], it was not a
hot research topic in the following  years. Recently, as the development and the appli-
cation of the linear matrix inequalities [, ], the finite-time stability has been devoted
considerable efforts.
The missing measurements have been attracting a great number of attention due to

the fact that the measurements are missing when sensors temporally fail [–]. If the
phenomenon of missing measurements is not considered during the filter design, the ac-
tual missingmeasurementsmay deteriorate the designed filters. Although, there aremany
results on the H∞ filtering, uncertain systems, and finite-time stability, there are few re-
sults on the H∞ filtering for uncertain systems subject to missing measurements. This
fact motivates me to do the research. In this paper, the contributions can be summarized
as follows. The missing measurements are considered the finite-time framework. Due to
the existence of the stochastic variable in the augmented system, the robust stochastic
finite-time boundedness is studied for the uncertain stochastic system.Moreover, theH∞
filtering with the robust stochastic finite-time stability is investigated.

2 Problem formulation
In this paper, the following uncertain discrete-time linear system is considered:

⎧⎪⎪⎨
⎪⎪⎩
xk+ = (A +�A)xk + (B +�B)ωk ,

yk = (C +�C)xk + (D +�D)ωk ,

zk = Exk ,

()

where xk ∈R
n denotes the state vector, yk ∈R

m is the system output, zk ∈R
p is the signal

to be estimated, and ωk ∈ R
r is the time-varying disturbance which satisfies

∞∑
k=

ωT
k ωk ≤ d (k ∈ N), ()

where d >  is a given scalar.
The matrices A, B, C, D, and E are constant matrices with appropriate dimensions. �A,

�B, �C, and �D are real time-varying matrix functions representing the time-varying
parameter uncertainties. It is assumed that the uncertainties are norm-bounded and ad-
missible, which can be modeled as

[
�A �B
�C �D

]
=

[
H

H

]
Gk

[
M M

M M

]
, ()

whereH,H,M,M,M, andM are known real constantmatrices andGk is an unknown
time-varying matrix function satisfying

‖Gk‖ ≤ I, ∀k ∈N. ()

If the sampling of the output is perfect, the input of the filter is equal to the output of
the system. However, if considering the intermittent sensor failures, the phenomenon of
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missing measurements occurs. This phenomenon was firstly proposed in []. Since the
reliability of the system becomes more and more important, the filter and control design
problem for systems subject to missing measurements has been a hot topic in recent years
[, , ]. Inspired by the work in [], the model of the missing measurement in this
paper is expressed as follows:

ŷk =

⎧⎨
⎩(C +�C)xk + (D +�D)ωk , the measurement is perfect,

(D +�D)ωk , the measurement is missing and only the noise is left,
()

where ŷk is the input of the filter to be designed. If a Bernoulli process is used to describe
the phenomenon, the measured output is expressed as

ŷk = αk(C +�C)xk + (D +�D)ωk , ()

where the stochastic variable rk is a Bernoulli distributed white sequence taking values in
the set {, }.
The main objective of this paper is to design a full-order filter for the system () in the

following form:

⎧⎨
⎩x̂k+ = Af x̂k + Bf ŷk ,

ẑk = Ef x̂k ,
()

where x̂k is the state of the filter, ẑk is an estimation of zk , and Af , Bf and Ef are filter
parameters to be designed later.
Suppose that β is the probability of the available measuring. Defining the filtering error

ek as ek = zk – ẑk , the following augmented system can be obtained:

⎧⎨
⎩ξk+ = (Ā +�A)ξk + (αk – β)(Ā +�A)ξk + (B̄ +�B)ωk ,

ek = Ēξk ,
()

where

ξk =

[
xk
x̂k

]
, Ā =

[
A 

βBf C Af

]
, �Ā =

[
�A 

βBf �C 

]
,

Ā =

[
 

Bf C 

]
, �Ā =

[
 

Bf �C 

]
,

B̄ =

[
B

Bf D

]
, �B̄ =

[
�B

Bf �D

]
, and Ē = [E –Ef ].

Note that there is a stochastic variable αk and some norm-bounded uncertainties in the
augmented system in (). Therefore, the challenge now is how to design the filter such that
the augmented system in () is robustly stochastically finite-time bounded and the effect
of the disturbance input to the signal to be estimated is constrained to a prescribed level.
Before proceeding, the following definitions are introduced.
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Definition  (Finite-time stable (FTS) []) For a class of discrete-time linear systems,

ξk+ = Aξk , k ∈N, ()

is said to be FTS with respect to (c, c,R,N), where R is a positive definite matrix,  < c <
c and N ∈N, if ξT

 Rξ ≤ c , then ξT
k Rξk ≤ c for all k ∈ {, , . . . ,N}.

Definition  (Robustly stochastically finite-time stable (RSFTS)) For a class of discrete-
time linear uncertain systems,

ξk+ = Ā(�A,αk)ξk , k ∈ N, ()

is said to be RSFTS with respect to (c, c,R,N), where the system matrix Ā(�A,αk) has
the uncertainty and the stochastic variable, R is a positive definite matrix,  < c < c and
N ∈ N, if for all admissible uncertainties �A, stochastic variable αk , ξT

 Rξ ≤ c , then
E{ξT

k Rξk} ≤ c for all k ∈ {, , . . . ,N}.

Definition  (Robustly stochastically finite-time bounded (RSFTB)) For a class of
discrete-time linear uncertain systems,

ξk+ = Ā(�A,αk)ξk + B̄(�B)ωk , k ∈N, ()

is said to be RSFTB with respect to (c, c,d,R,N), where the systemmatrix Ā(�A,αk) has
the uncertainty and the stochastic variable, the input matrix contains the norm-bounded
uncertainty, R is a positive definite matrix,  < c < c and N ∈ N, if for all admissible
uncertainties �A and �B, stochastic variable αk , ξT

 Rξ ≤ c , then E{ξT
k Rξk} ≤ c for all

k ∈ {, , . . . ,N}.

With the above definitions, the main objectives in this paper can be summarized as fol-
lows. For the uncertainty in , design the full-order filter () such that for all the admissible
uncertainties and the missing measurements,
• the augmented system () is RSFTS;
• under the zero-initial condition, the signal to be estimated zk satisfies

E

{ N∑
i=

zTk zk

}
< γ 

N∑
i=

ωT
k ωk ()

for all l-bounded ωk , where the prescribed value γ is theH∞ attenuation level.
In addition, some useful lemmas are also needed.

Lemma  (Schur complement []) Given a symmetric matrix � =
[ � �

� �

]
, the following

three conditions are equivalent to each other:
• � < ;
• � < , � –�T

�
–
 � < ;

• � < , � –��
–
�

T
 < .
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Lemma  [, ] Let 	 = 	T, H̄ and M̄ be real matrices with compatible dimensions,
and let Gk be time-varying and satisfy (). Then it can be concluded that the following
condition:

	 + H̄GkM̄ + (H̄GkM̄)T <  ()

holds if and only if there exists a positive scaler ε >  such that

⎡
⎢⎣

	 H̄ εM̄T

∗ –εI 
∗ ∗ –εI

⎤
⎥⎦ <  ()

is satisfied.

3 Main results
3.1 Finite-time stability andH∞ performance analysis
In this section, the finite-time stability, robust finite-time stability, and robust stochastic
finite-time stability will be analyzed by assuming the parameters of the filter to be designed
are given.

Theorem  The augmented system in () is RSFTB with respect to (c, c,d,R,N) if there
exist positive-definite matrices P = PT

 , P = PT
 and two scalars θ ≥  and ε >  such that

the following conditions hold:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–P  hPĀ  hPH̄   
∗ –P PĀ PB̄  PH̄  
∗ ∗ –θP    εM̄T

 εM̄T


∗ ∗ ∗ –θP    εMT


∗ ∗ ∗ ∗ –εI   
∗ ∗ ∗ ∗ ∗ –εI  
∗ ∗ ∗ ∗ ∗ ∗ –εI 
∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< , ()

and

λmax(P̃)c + λmax(P)d <
cλmin(P̃)

θN , ()

where

P̃ = R–/PR–/, h =
√

β( – β),

H̄ =

[
 

Bf H 

]
, M̄ =

[
 
M 

]
,

H̄ =

[
H 

Bf H 

]
, M̄ =

[
M 

βM 

]
, M̄ =

[
M

M

]
.
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Proof Consider the following Lyapunov function:

V (k) = ξT
k Pξk , ()

where P is a symmetric positive-definite matrix. For the augmented system in (), the
expectation of one step advance of the Lyapunov function can be derived as

E
{
V (k + )|ξk

}
= ξT

k
(
(Ā +�Ā) + h(Ā +�Ā)

)TP
(
(Ā +�Ā) + h(Ā +�Ā)

)
ξk

+ ξT
k (Ā +�Ā)TP(B̄ +�B̄)ωk +ωT

k (B̄ +�B̄)TP(B̄ +�B̄)ωk

=

[
ξk

ωk

]T [
 

∗ 

][
ξk

ωk

]
=

[
ξk

ωk

]T



[
ξk

ωk

]
, ()

where

 =
(
(Ā +�Ā) + h(Ā +�Ā)

)TP
(
(Ā +�Ā) + h(Ā +�Ā)

)
,

 = (Ā +�Ā)TP(B̄ +�B̄),

 = (B̄ +�B̄)TP(B̄ +�B̄).

Note that

�Ā = H̄ḠkM̄, �Ā = H̄ḠkM̄, �B̄ = H̄ḠkM̄, ()

where

Ḡk =

[
Gk 
 Gk

]
. ()

By using the Schur complement, the condition in () implies that

 <

[
θP 
 θP

]
, ()

since the condition in () can be rewritten as

	 + H̄GkM̄ + (H̄GkM̄)T < , ()

where

	 =

⎡
⎢⎢⎢⎣
–P  hPĀ 
∗ –P PĀ PB̄
∗ ∗ –θP 
∗ ∗ ∗ –θP

⎤
⎥⎥⎥⎦ ,

H̄ =

⎡
⎢⎢⎢⎣
hPH̄ 
 PH̄

 
 

⎤
⎥⎥⎥⎦ , M̄ =

[
  M̄ 
  M̄ M̄

]
.
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With the condition (), the following inequality can be obtained:

E
{
V (k + )|ξk

}
< θV (k) + θωT

k Pωk . ()

Taking the iterative operation with respect to the time instant k, the following inequality
is derived:

E
{
V (k)|ξ

}
< θ kV () +

k∑
i=

θ k–i+ωT
j–Pωj– < θN(

λmax(P̃)c + λmax(P)d). ()

It follows from the Lyapunov function that

E
{
V (k)|ξ

}
> λmin(P̃)ξT

k Rξk . ()

Combing () and (), one gets

E
{
ξT
k Rξk

}
<

θN

λmin(P̃)
(
λmax(P̃)c + λmax(P)d). ()

It is inferred from the conditions () and () that

E
{
ξT
k Rξk

}
< c. ()

Therefore, if the conditions () and () hold, the augmented system () is RSFTB. The
proof is completed. �

It is noticed that there is a positive-definite matrix P in Theorem . The matrix P can
be randomly chosen. For considering theH∞ performance, other sufficient conditions are
provided in the following theorem.

Theorem  The augmented system in () is RSFTB with respect to (c, c,d,R,N) if there
exist positive-definite matrix P = PT and three scalars θ ≥ , ε > , and γ >  such that the
following conditions hold:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–P  hPĀ  hPH̄   
∗ –P PĀ PB̄  PH̄  
∗ ∗ –θP    εM̄T

 εM̄T


∗ ∗ ∗ –γ I    εMT


∗ ∗ ∗ ∗ –εI   
∗ ∗ ∗ ∗ ∗ –εI  
∗ ∗ ∗ ∗ ∗ ∗ –εI 
∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< , ()

and

λmax(P̃)c + γ d <
cλmin(P̃)

θN , ()

where P̃ = R–/PR–/ and h =
√

β( – β).

http://www.journalofinequalitiesandapplications.com/content/2013/1/236
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Proof To prove the theorem, P and P in Theorem  can be replaced with P and γ I/θ ,
respectively. The proof is completed. �

The robust stochastic finite-time stability and the robust stochastic finite-time bound-
edness of the augmented system () have been offered. Now, we are going to consider the
H∞ performance.

Theorem  The augmented system in () is RSFTB with respect to (, c,d,R,N) and with
an H∞ attenuation level γ if there exist positive-definite matrix P = PT and three scalars
θ ≥ , ε > , and γ >  such that the following conditions hold:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–P   hPĀ  hPH̄   
∗ –P  PĀ PB̄  PH̄  
∗ ∗ –I Ē     
∗ ∗ ∗ –θP    εM̄T

 εM̄T


∗ ∗ ∗ ∗ –γ I    εMT


∗ ∗ ∗ ∗ ∗ –εI   
∗ ∗ ∗ ∗ ∗ ∗ –εI  
∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< , ()

and

γ d <
cλmin(P̃)

θN , ()

where P̃ = R–/PR–/ and h =
√

β( – β).

Proof In the proof of H∞ performance, it is required that the initial value of the state is
zero. Therefore, c inTheorem is set to be zero.Under the zero-initial condition, consider
the following cost function:

J = E
{
V (k + )|ξk

}
+E

{
zTk zk

}
– γ I. ()

The cost function can be revaluated with similar lines in Theorem . �

3.2 Filter design
The robust stochastic finite-time stability and theH∞ performance have been investigated
in the above subsection. In this subsection, the filter design method will be proposed.

Theorem  Given a positive constant γ and two scalars σ and ρ , the closed-loop system
in () is RSFTB with respect to (, c,d,R,N) and with a prescribedH∞ attenuation level γ
if there exists a positive-definite matrices P = PT =

[ P P
PT σP

]
,matrices

[ AF BF
Ef 

]
, two scalars

http://www.journalofinequalitiesandapplications.com/content/2013/1/236
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θ ≥ , and ε >  such that the following conditions hold:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–P   h  h   
∗ –P       
∗ ∗ –I Ē     
∗ ∗ ∗ –θP    εM̄T

 εM̄T


∗ ∗ ∗ ∗ –γ I    εMT


∗ ∗ ∗ ∗ ∗ –εI   
∗ ∗ ∗ ∗ ∗ ∗ –εI  
∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< , ()

γ d <
cρ
θN , ()

and

ρI < R–/PR–/, ()

where

 =

[
BFC 
σBFC 

]
,  =

[
PA + βBFC AF

PT
A + βσBFC σAF

]
,  =

[
BFH 
σBFH 

]
,

 =

[
PB + BFD
PT
B + σBFD

]
,  =

[
PH + BFH 
PT
H + σBFH 

]
.

Moreover, the filter parameters can be calculated as Af = P–
AF and Bf = P–

BF .

Proof It is assumed that the Lyapunov weighting matrix has the following structure:

P =

[
P P

PT
 σP

]
, ()

where σ is a prescribed scalar. With this assumption, the coupled terms in Theorem  can
be evaluated as follows:

PĀ =

[
P P

PT
 σP

][
A 

βBf C Af

]
=

[
PA + βPBf C PAf

PT
A + βσPBf C σPAf

]
,

PĀ =

[
P P

PT
 σP

][
 

βBf C 

]
=

[
PBf C 
σPBf C 

]
,

PB̄ =

[
P P

PT
 σP

][
B

Bf D

]
=

[
PB + PBf D
PT
B + σPBf D

]
, ()

PH̄ =

[
P P

PT
 σP

][
 

Bf H 

]
=

[
PBf H 

σPBf H 

]
,

PH̄ =

[
P P

PT
 σP

][
H 

Bf H 

]
=

[
PH + PBf H 
PT
H + σPBf H 

]
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/236
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Defining new variables as AF = PAf and BF = PBf , the condition in () is equivalent
to (). Supposing that

λmin(P̃) ≥ ρ, ()

the conditions () and () can guarantee that the condition () is satisfied. �

The H∞ performance γ refers to the attenuation level from the external noise to the
signal to be estimated. Therefore, it is desired that the performance γ should be as small
as possible. For fixed θ and c, the optimal γ can be obtained by

⎧⎨
⎩minγ ,

s.t. (), () and ().
()

4 Numerical example
Consider the system in () with the following matrix:

A =

[
. .
–. .

]
, B =

[
.
–.

]
,

C = [ ], D = ., E = [ ],

H =

[
.
.

]
, H = ., M = [ –],

M = ., M = [ ], M = ..

In this example, the following values are chosen for the finite-time stability:

R = I, N = , c = , d = ., θ = ..

It is assumed that the probability of the available measurements is ., that is, % of the
output is randomly missing.With the proposed filter design problem in (), the achieved
minimumH∞ performance index is γ = . and the corresponding optimal filter is

⎧⎨
⎩x̂k+ =

[ –. –.
. .

]
x̂k +

[ –.
.

]
ŷk ,

ẑk = [ . –.]x̂k .

In the simulation, assume that the external disturbance satisfies

ωk =
.
k + 

,

and the time-varying parameter satisfies

Gk = sin(k).

It is easy to check that the -norm of the external disturbance is less than d which is .
and the time-varying parameter ‖Gk‖ ≤ . It can be seen from Figure  that the estimated

http://www.journalofinequalitiesandapplications.com/content/2013/1/236
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Figure 1 Trajectories of the signal to be estimated and the estimated signal.

Figure 2 Stochastic values of the intermittent measurements in the simulation.

signal ẑk can track the signal to be estimated well. The intermittent measurements in the
random simulation are shown in Figure .

5 Conclusion
In this paper, the robust finite-time H∞ filter design problem of discrete-time systems
subject to missing measurements has been investigated. The uncertainties in the system
matrices are assumed to be norm-bounded. The measurements of the system output are
intermittent and a Bernoulli process is used to model the intermittent measurements.

http://www.journalofinequalitiesandapplications.com/content/2013/1/236
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Based on the results of the robust stochastic finite-time stability and theH∞ performance,
the filter design approach was proposed. Finally, an illustrative example was used to show
the design procedure and the effectiveness of the proposed design approach.
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