6 research outputs found

    Thermosensitive ZrP-PNIPAM Pickering Emulsifier and the Controlled-Release Behavior

    Get PDF
    Asymmetric Janus and Gemini ZrP-PNIPAM monolayer nanoplates were obtained by exfoliation of two-dimensional layered ZrP disks whose surface was covalently modified with thermosensitive polymer PNIPAM. The nanoplates largely reduced interfacial tension (IFT) of the oil/water interface so that they were able to produce stable oil/water emulsions, and the PNIPAM grafting either on the surface or the edge endowed the nanoplates rapid temperature responsivity. The ZrP-PNIPAM nanoplates proved to be thermosensitive Pickering emulsifiers for controlled-release applications

    Thermosensitive ZrP-PNIPAM Pickering Emulsifier and the Controlled-Release Behavior

    No full text
    Asymmetric Janus and Gemini ZrP-PNIPAM monolayer nanoplates were obtained by exfoliation of two-dimensional layered ZrP disks whose surface was covalently modified with thermosensitive polymer PNIPAM. The nanoplates largely reduced interfacial tension (IFT) of the oil/water interface so that they were able to produce stable oil/water emulsions, and the PNIPAM grafting either on the surface or the edge endowed the nanoplates rapid temperature responsivity. The ZrP-PNIPAM nanoplates proved to be thermosensitive Pickering emulsifiers for controlled-release applications

    Aqueous Exfoliation of Graphite into Graphene Assisted by Sulfonyl Graphene Quantum Dots for Photonic Crystal Applications

    No full text
    We investigate the π–π stacking of polyaromatic hydrocarbons (PAHs) with graphene surfaces, showing that such interactions are general across a wide range of PAH sizes and species, including graphene quantum dots. We synthesized a series of graphene quantum dots with sulfonyl, amino, and carboxylic functional groups and employed them to exfoliate and disperse pristine graphene in water. We observed that sulfonyl-functionalized graphene quantum dots were able to stabilize the highest concentration of graphene in comparison to other functional groups; this is consistent with prior findings by pyrene. The graphene nanosheets prepared showed excellent colloidal stability, indicating great potential for applications in electronics, solar cells, and photonic displays which was demonstrated in this work

    Chiral Photonic Crystalline Microcapsules with Strict Monodispersity, Ultrahigh Thermal Stability, and Reversible Response

    No full text
    Tunable photonic crystals (TPCs) reflecting selected wavelengths of visible light and responding to external stimuli are widely applied to fabricate smart optical devices. Chiral nematic liquid crystals (CNLCs) possessing response to temperature, electric field, and magnetic field are considered as one-dimensional TPCs. The encapsulation of CNLCs provides responsive photonic devices with stand-alone macroscopic structure and excellent processability. However, when CNLCs as cores are wrapped by polymeric shells to form core–shell structured microcapsules, the polydispersity of microcapsule size, the irregular spatial geometry, and the low thermal stability inevitably result in a deterioration of the optical performance and limited application at high temperatures. Herein, a combination of microfluidic emulsification and interfacial polymerization is employed to fabricate polymer wrapped photonic crystalline microcapsules (PWPCMs). The sizes and reflected colors of PWPCMs can be simultaneously controlled by adjusting the flow rates in the microfluidic chips. PWPCMs possess strictly monodispersed sizes with coefficients of variation less than 1%. The free-standing PWPCMs have high thermal stability. The deformation temperature of PWPCMs is as high as 210 °C. The colored PWPCMs also exhibit a reversible thermochromic property between the chiral nematic phase and the isotropic phase. The highly stable and tunable PWPCMs provide new opportunities for a wide range of photonic applications, including smart optical window, tunable microlasers, responsive microsensors, and various photonic devices

    Highly Biocompatible, Underwater Superhydrophilic and Multifunctional Biopolymer Membrane for Efficient Oil–Water Separation and Aqueous Pollutant Removal

    No full text
    Conventional wastewater treatment systems generally require multiple steps and complex procedures to remove aqueous pollutants and oil contaminants from polluted water. Herein, we fabricate an underwater superoleophobic membrane by cross-linking konjac glucomannan on pristine fabrics, demonstrating that the concept of oil–water separation and the principle of aqueous pollutant removal can be integrated. Such biopolymer-modified fabric not only separates oil–water mixtures with high efficiency (up to 99.9%), but also exhibits the intriguing characteristic of removing water-soluble pollutants (including polyaromatic dyes and heavy metal ions). As a proof of concept, the synthetic wastewater purified with biopolymer membranes was used to cultivate and irrigate pinto beans, causing no observable deleterious effect on seed germination and growth. These results further confirm the biocompatibility and effectiveness of biopolymer membranes, offering an encouraging solution to challenges including wastewater treatment and cleanup of oil spills

    Hierarchical, Self-Healing and Superhydrophobic Zirconium Phosphate Hybrid Membrane Based on the Interfacial Crystal Growth of Lyotropic Two-Dimensional Nanoplatelets

    No full text
    We demonstrate a facile route to in situ growth of lyotropic zirconium phosphate (ZrP) nanoplates on textiles via an interfacial crystal growing process. The as-prepared hybrid membrane shows a hierarchical architecture of textile fibers (porous platform for fluid transport), ZrP nanoplatelets (layered scaffolds for chemical barriers), and octadecylamine (organic species for superhydrophobic functionalization). Interestingly, such a hybrid membrane is able to separate the oily wastewater with a high separation efficiency of 99.9%, even at in harsh environments. After being chemically etched, the hybrid membrane is able to restore its hydrophobicity autonomously and repeatedly, owing to the hierarchical structure that enables facile loading of healing agent. We anticipate that the concept of implanting superhydrophobic self-healing features in anisotropic structure of lyotropic nanoparticles will open up new opportunities for developing advanced multifunctional materials for wastewater treatment, fuel purification, and oil spill mitigation
    corecore