70,164 research outputs found
Survival mediation analysis with the death-truncated mediator: The completeness of the survival mediation parameter
In medical research, the development of mediation analysis with a survival outcome has facilitated investigation into causal mechanisms. However, studies have not discussed the death-truncation problem for mediators, the problem being that conventional mediation parameters cannot be well-defined in the presence of a truncated mediator. In the present study, we systematically defined the completeness of causal effects to uncover the gap, in conventional causal definitions, between the survival and nonsurvival settings. We proposed three approaches to redefining the natural direct and indirect effects, which are generalized forms of the conventional causal effects for survival outcomes. Furthermore, we developed three statistical methods for the binary outcome of the survival status and formulated a Cox model for survival time. We performed simulations to demonstrate that the proposed methods are unbiased and robust. We also applied the proposed method to explore the effect of hepatitis C virus infection on mortality, as mediated through hepatitis B viral load
Phase transitions in the Shastry-Sutherland lattice
Two recently developed theoretical approaches are applied to the
Shastry-Sutherland lattice, varying the ratio between the couplings on
the square lattice and on the oblique bonds. A self-consistent perturbation,
starting from either Ising or plaquette bond singlets, supports the existence
of an intermediate phase between the dimer phase and the Ising phase. This
existence is confirmed by the results of a renormalized excitonic method. This
method, which satisfactorily reproduces the singlet triplet gap in the dimer
phase, confirms the existence of a gapped phase in the interval
Comment: Submited for publication in Phys. Rev.
A Characterization of Subspaces and Quotients of Reflexive Banach Spaces with Unconditional Bases
We prove that the dual or any quotient of a separable reflexive Banach space
with the unconditional tree property has the unconditional tree property. Then
we prove that a separable reflexive Banach space with the unconditional tree
property embeds into a reflexive Banach space with an unconditional basis. This
solves several long standing open problems. In particular, it yields that a
quotient of a reflexive Banach space with an unconditional finite dimensional
decomposition embeds into a reflexive Banach space with an unconditional basis
Phase diagram of two-species Bose-Einstein condensates in an optical lattice
The exact macroscopic wave functions of two-species Bose-Einstein condensates
in an optical lattice beyond the tight-binding approximation are studied by
solving the coupled nonlinear Schrodinger equations. The phase diagram for
superfluid and insulator phases of the condensates is determined analytically
according to the macroscopic wave functions of the condensates, which are seen
to be traveling matter waves.Comment: 13 pages, 2 figure
Non-Markovian disentanglement dynamics of two-qubit system
We investigated the disentanglement dynamics of two-qubit system in
Non-Markovian approach. We showed that only the couple strength with the
environment near to or less than fine-structure constant 1/137, entanglement
appear exponential decay for a certain class of two-qubit entangled state.
While the coupling between qubit and the environment is much larger, system
always appears the sudden-death of entanglement even in the vacuum environment.Comment: 17 pages, 3 figure
The Halo Occupation Distribution of X-ray-Bright Active Galactic Nuclei: A Comparison with Luminous Quasars
We perform halo occupation distribution (HOD) modeling of the projected
two-point correlation function (2PCF) of high-redshift (z~1.2) X-ray-bright
active galactic nuclei (AGN) in the XMM-COSMOS field measured by Allevato et
al. The HOD parameterization is based on low-luminosity AGN in cosmological
simulations. At the median redshift of z~1.2, we derive a median mass of
(1.02+0.21/-0.23)x10^{13} Msun/h for halos hosting central AGN and an upper
limit of ~10% on the AGN satellite fraction. Our modeling results indicate (at
the 2.5-sigma level) that X-ray AGN reside in more massive halos compared to
more bolometrically luminous, optically-selected quasars at similar redshift.
The modeling also yields constraints on the duty cycle of the X-ray AGN, and we
find that at z~1.2 the average duration of the X-ray AGN phase is two orders of
magnitude longer than that of the quasar phase. Our inferred mean occupation
function of X-ray AGN is similar to recent empirical measurements with a group
catalog and suggests that AGN halo occupancy increases with increasing halo
mass. We project the XMM-COSMOS 2PCF measurements to forecast the required
survey parameters needed in future AGN clustering studies to enable higher
precision HOD constraints and determinations of key physical parameters like
the satellite fraction and duty cycle. We find that N^{2}/A~5x10^{6} deg^{-2}
(with N the number of AGN in a survey area of A deg^{2}) is sufficient to
constrain the HOD parameters at the 10% level, which is easily achievable by
upcoming and proposed X-ray surveys.Comment: 11 pages, 4 figures, accepted in Ap
- …