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Web Appendix A 

1. Mediation analysis for survival time in the presence of previous 

death 
For survival time 𝑇, TE, NDE, and NIE are traditionally defined on risk ratio scale through 

log hazard function as follows: 

TE = 𝑙𝑜𝑔(𝜆𝑇(1,𝑀(1))(𝑡)) − 𝑙𝑜𝑔(𝜆𝑇(0,𝑀(0))(𝑡)), 

NDE = 𝑙𝑜𝑔(𝜆𝑇(1,𝑀(0))(𝑡)) − 𝑙𝑜𝑔(𝜆𝑇(0,𝑀(0))(𝑡)), and 

NIE = 𝑙𝑜𝑔(𝜆𝑇(1,𝑀(1))(𝑡)) − 𝑙𝑜𝑔(𝜆𝑇(1,𝑀(0))(𝑡)), 

where𝜆𝑇(1,𝑀(1))(𝑡) is hazard function with respect to survival time 𝑇. 

 Similar to the causal effects defined on survival status, the regular causal effects defined 

on survival time is the lack of completeness in the presence of previous death. Among the 

protected group 𝑃𝑃  (i.e. 𝑌𝑝(0) = 0  and 𝑌𝑝(1) = 1  , the counterfactual outcome of survival 

time 𝑇(1, 𝑌𝑝(1),𝑀(0, 𝑌𝑝(0))), which equal to 𝑇(1, 𝑦𝑝 = 1,𝑀(0, 𝑦𝑝 = 0)), cannot be defined 

since it is the hypothetical status suppose it is without previous death but intervened by 

𝑀(0, 𝑦𝑝 = 0)  which is the mediator truncated by previous death. While 

𝑇(0, 𝑌𝑝(0),𝑀(0, 𝑌𝑝(0))) is also intervened by the death-truncated mediator, it is the survival 

time suppose this individual is subject to a previous death (𝑦𝑝 = 0   which implies that 
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𝑇(0, 𝑌𝑝(0),𝑀(0, 𝑌𝑝(0)))is always equal to zero. Consequently, we can define TE among 𝑃𝑃 

but not NDE and NIE. Following the argumentation above, we found that among the group 𝑃𝐻, 

all counterfactual values of 𝑌  are either well-defined or zero. Among the group 𝑃𝐷 , all 

counterfactuals are zero. 

 

2. Completeness for total direct effect and pure indirect effect in 

the presence of protective effect 
 As the alternative for effect decomposition, the total direct effect (TDE  and pure indirect 

effect (PIE  are defined as   

TDE = 𝑌 (1, 𝑌𝑝(1),𝑀(1, 𝑌𝑝(1))) − 𝑌 (0, 𝑌𝑝(0),𝑀(1, 𝑌𝑝(1))), and  

PIE = 𝑌 (0, 𝑌𝑝(0),𝑀(1, 𝑌𝑝(1))) − 𝑌 (0, 𝑌𝑝(0),𝑀(0, 𝑌𝑝(0))).                       

By assuming the protective effect of the exposure, we subsequently discuss the completeness 

for the definitions of TDE and PIE under 𝑃𝑆 , 𝑃𝑃 , and 𝑃𝐷 , respectively. Following the 

argumentation for NIE and NDE in the manuscript, it is clearly known that TDE and PIE are 

well-defined among 𝑃𝑆 and 𝑃𝐷. Here, we shown that TDE and PIE are also well-defined among 

𝑃𝑃 . Among the protected group 𝑃𝑃  (i.e. 𝑌𝑝(0) = 0  and 𝑌𝑝(1) = 1  , by definition, the 

counterfactual outcome 𝑌(0, 𝑌𝑝(0),𝑀(1, 𝑌𝑝(1)))  and 𝑌(0, 𝑌𝑝(0),𝑀(0, 𝑌𝑝(0))) , which equal 

to 𝑌(0, 𝑦𝑝 = 0,𝑀(1, 𝑦𝑝 = 1))  and 𝑌(0, 𝑦𝑝 = 0,𝑀(0, 𝑦𝑝 = 0)) , are always equal to zero. 

Moreover, 𝑌(1, 𝑌𝑝(1),𝑀(1, 𝑌𝑝(1))) = 𝑌(1, 𝑦𝑝 = 1,𝑀(1, 𝑦𝑝 = 1)) can be defined. Therefore, 

TDE and PIE are well-defined among protected group 𝑃𝑃. Consequently, we concluded that 

the definitions of TDE and PIE are completeness in the presence of protective effect.  

 

3. The completeness of 𝐍𝐃𝐄𝐝𝐭 and 𝐍𝐈𝐄𝐝𝐭 

 Based on the proposed definitions of (3 , we proved NDEdt and NIEdt are completeness. 

Among the always-survivor group 𝑃𝑆 (i.e. 𝑌𝑝(1) = 1 and 𝑌𝑝(0) = 1 , we have 

NDEdt = 𝑌(1, 𝑌𝑝(1),𝑀(0, 𝑌𝑝(1))) − 𝑌(0, 𝑌𝑝(0),𝑀(0, 𝑌𝑝(0)))  

            = 𝑌(1,1,𝑀(0,1)) − 𝑌(0,0,𝑀(0,1)) and 

NIEdt = 𝑌(1, 𝑌𝑝(1),𝑀(1, 𝑌𝑝(1))) − 𝑌(1, 𝑌𝑝(1),𝑀(0, 𝑌𝑝(1))) 

           = 𝑌(1,1,𝑀(1,1)) − 𝑌(1,0,𝑀(0,1)). 



Among the harmed group 𝑃𝐻 (i.e. 𝑌𝑝(1) = 0 and 𝑌𝑝(0) = 1 , we have 

NDEdt = 𝑌(1,0,𝑀(0,0)) − 𝑌(0,1,𝑀(0,1))  

           = −𝑌(0,1,𝑀(0,1)) and 

NIEdt = 𝑌(1,0,𝑀(1,0)) − 𝑌(1,0,𝑀(0,0)) = 0. 

Among the protected group 𝑃𝑃 (i.e. 𝑌𝑝(1) = 1 and 𝑌𝑝(0) = 0 , we have  

NDEdt = 𝑌(1,1,𝑀(0,1)) − 𝑌(0,0,𝑀(0,0)) 

            = 𝑌(1,1,𝑀(0,1)) and 

NIEdt = 𝑌(1,1,𝑀(1,1)) − 𝑌(1,1,𝑀(0,1)). 

Among the doomed group the 𝑃𝐷(i.e. 𝑌𝑝(1) = 0 and 𝑌𝑝(0) = 0 , we have 

NDEdt = 𝑌(1,0,𝑀(0,0)) − 𝑌(0,0,𝑀(0,0)) = 0 and  

NIEdt = 𝑌(1,0,𝑀(1,0)) − 𝑌(1,0,𝑀(0,0)) = 0. 

Since 𝑀(1,1)  and 𝑀(0,1)  are always meaningful, NDEdt  and NIEdt  are well-defined among 

four groups. Consequently, the proposed formulations of death-truncated causal effects are 

completeness. 

 

4. Proof of Theorem 1 

Among the group 𝑃𝑆: 

𝜓(1,1) = 𝐸 (𝑌(1, 𝑌𝑝(1),𝑀(1, 𝑌𝑝(1)))) = 𝐸 (𝑌(1,1,𝑀(1,1))) = 𝜙(1,1) 

𝜓(0,0) = 𝐸 (𝑌(0, 𝑌𝑝(0),𝑀(0, 𝑌𝑝(0)))) = 𝐸 (𝑌(0,0,𝑀(0,0))) = 𝜙(0,0) 

𝜓(1,0) = 𝐸 (𝑌(1, 𝑌𝑝(1),𝑀(0, 𝑌𝑝(0)))) = 𝐸 (𝑌(1,1,𝑀(0,1))) 

                                                                  = 𝐸 (𝑌(1, 𝑌𝑝(1),𝑀(0, 𝑌𝑝(1)))) = 𝜙(1,0) 

∴ NDE = 𝜓(1,0) − 𝜓(0,0) = 𝜙(1,0) − 𝜙(0,0) = NDEdt 

NIE = 𝜓(1,1) − 𝜓(1,0) = 𝜙(1,1) − 𝜙(1,0) = NIEdt  

Among the group 𝑃𝐻: 

𝜓(1,1) = 𝐸 (𝑌(1, 𝑌𝑝(1),𝑀(1, 𝑌𝑝(1)))) = 𝐸 (𝑌(1,0,𝑀(1,0))) = 𝜙(1,1) 

𝜓(0,0) = 𝐸 (𝑌(0, 𝑌𝑝(0),𝑀(0, 𝑌𝑝(0)))) = 𝐸 (𝑌(0,1,𝑀(0,1))) = 𝜙(0,0) 

𝜓(1,0) = 𝐸 (𝑌(1, 𝑌𝑝(1),𝑀(0, 𝑌𝑝(0)))) = 𝐸 (𝑌(1,0,𝑀(0,1))) 



                                                                  = 𝐸 (𝑌(1, 𝑌𝑝(1),𝑀(0, 𝑌𝑝(1)))) = 𝜙(1,0) 

∴ NDE = 𝜓(1,0) − 𝜓(0,0) = 𝜙(1,0) − 𝜙(0,0) = NDEdt 

NIE = 𝜓(1,1) − 𝜓(1,0) = 𝜙(1,1) − 𝜙(1,0) = NIEdt  

Among the group 𝑃𝑝: 

𝜓(1,1) = 𝐸 (𝑌(1, 𝑌𝑝(1),𝑀(1, 𝑌𝑝(1)))) = 𝐸 (𝑌(1,0,𝑀(1,0))) = 𝜙(1,1) 

𝜓(0,0) = 𝐸 (𝑌(0, 𝑌𝑝(0),𝑀(0, 𝑌𝑝(0)))) = 𝐸 (𝑌(0,0,𝑀(0,0))) = 𝜙(0,0) 

𝜓(1,0) = 𝐸 (𝑌(1, 𝑌𝑝(1),𝑀(0, 𝑌𝑝(0)))) = 𝐸 (𝑌(1,0,𝑀(0,0))) 

                                                                  = 𝐸 (𝑌(1, 𝑌𝑝(1),𝑀(0, 𝑌𝑝(1)))) = 𝜙(1,0) 

∴ NDE = 𝜓(1,0) − 𝜓(0,0) = 𝜙(1,0) − 𝜙(0,0) = NDEdt 

NIE = 𝜓(1,1) − 𝜓(1,0) = 𝜙(1,1) − 𝜙(1,0) = NIEdt  

Thus, within three survival groups, the death-truncated causal effects, NDEdt and NIEdt, are 

identical to regular causal effects, NDE and NIE, respectively.  

 

 

 

 

 

 

 

 

 

  



Web Appendix B 
 

1. NPSEM  

𝜀𝐴∐𝜀𝑌  ⇒𝐴∐(𝑌𝑝(𝑎), 𝑌(𝑎, 1,𝑚)) (Assumption 1  

𝜀𝑀∐𝜀𝑌  ⇒ 𝑀∐𝑌(𝑎, 1,𝑚)|𝐴 = 𝑎,  𝑌𝑝 = 1   (Assumption 2  

𝜀𝑀∐𝜀𝐴  ⇒ 𝑀(𝑎∗, 𝑌𝑝 = 1)∐𝐴 (Assumption 3  

𝜀𝑀∐𝜀𝑌  ⇒ 𝑀(𝑎∗, 𝑌𝑝 = 1)∐(𝑌𝑝(𝑎), 𝑌(𝑎, 1,𝑚))  (Assumption 4  

𝜀𝑀∐𝜀𝑌  ⇒ 𝑀(𝑎∗, 𝑌𝑝 = 1)∐𝑌𝑝|𝐴    (Assumption 5  

 

 

2. Proof of Theorem 2 

𝜙(𝑎, 𝑎∗) ≡ E (𝑌(𝑎, 𝑌𝑝(𝑎),𝑀(𝑎∗, 𝑌𝑝(𝑎)))) 

= E(𝑌(𝑎, 𝑌𝑝(𝑎),𝑀(𝑎∗, 𝑌𝑝(𝑎)))|𝑌𝑝(𝑎) = 1)𝑃(𝑌𝑝(𝑎) = 1)  

+E(𝑌(𝑎, 𝑌𝑝(𝑎),𝑀(𝑎∗, 𝑌𝑝(𝑎)))|𝑌𝑝(𝑎) = 0)𝑃(𝑌𝑝(𝑎) = 0) 

= E(𝑌(𝑎, 𝑦𝑝 = 1,𝑀(𝑎∗, 𝑦𝑝 = 1))|𝑌𝑝(𝑎) = 1)𝑃(𝑌𝑝(𝑎) = 1) (∵ 𝒀(𝒀𝒑(𝒂) = 𝟎) = 𝟎) 

= E (𝑌(𝑎, 𝑦𝑝 = 1,𝑀(𝑎∗, 𝑦𝑝 = 1))𝑌𝑝(𝑎)) (∵ 𝐁𝐢𝐬𝐛𝐢𝐧𝐚𝐫𝐲 ⇒ 𝑬(𝑩𝒀) = 𝑬(𝒀|𝑩 = 𝟏)𝑷(𝑩 = 𝟏)) 

= ∫ 𝐸(𝑌𝑝(𝑎)𝑌(𝑎, 1,𝑚)|𝐶 = 𝑐)𝑓(𝑐)𝑑𝑐
𝑐

  

= ∫ 𝐸(𝑌𝑝(𝑎)𝑌(𝑎, 1,𝑚)|𝑀(𝑎∗, 𝑦𝑝 = 1) = 𝑚, 𝐶 = 𝑐)𝑓(𝑀(𝑎∗, 𝑦𝑝 = 1) = 𝑚)𝑓(𝑐)𝑑𝑚𝑑𝑐
𝑚,𝑐

  

= ∫ 𝐸(𝑌𝑝(𝑎)𝑌(𝑎, 1,𝑚)|𝐶 = 𝑐)𝑓(𝑀(𝑎∗, 𝑌𝑝 = 1) = 𝑚)𝑓(𝑐)𝑑𝑚𝑑𝑐
𝑚,𝑐

 (𝐛𝐲𝑨𝒔𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝟒. 𝟒) 

= ∫ 𝐸(𝑌𝑝(𝑎)𝑌(𝑎, 1,𝑚)|𝐴 = 𝑎, 𝐶 = 𝑐)𝑓(𝑀(𝑎∗, 𝑌𝑝 = 1) = 𝑚)𝑓(𝑐)𝑑𝑚𝑑𝑐
𝑚,𝑐

  

(𝐛𝐲𝑨𝒔𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝟒. 𝟏) 

= ∫ 𝐸(𝑌𝑝𝑌(𝑎, 1,𝑚)|𝐴 = 𝑎, 𝐶 = 𝑐)𝑓(𝑀(𝑎∗, 𝑌𝑝 = 1) = 𝑚)𝑓(𝑐)𝑑𝑚𝑑𝑐
𝑚,𝑐

 (𝐛𝐲𝒄𝒐𝒏𝒔𝒊𝒔𝒕𝒆𝒏𝒄𝒚) 

= ∫ 𝐸(𝑌(𝑎, 1,𝑚)|𝐴 = 1, 𝑌𝑝 = 1, 𝐶 = 𝑐)𝑓(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶 = 𝑐)
𝑚,𝑐

  

𝑓(𝑀(𝑎∗, 𝑌𝑝 = 1) = 𝑚)𝑓(𝑐)𝑑𝑚𝑑𝑐  

= ∫ 𝐸(𝑌(𝑎, 1,𝑚)|𝐴 = 𝑎, 𝑌𝑝 = 1,𝑀 = 𝑚, 𝐶 = 𝑐)𝑓(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶 = 𝑐)
𝑚,𝑐

  

                     𝑓(𝑀(𝑎∗, 𝑌𝑝 = 1) = 𝑚)𝑓(𝑐)𝑑𝑚𝑑𝑐  

(𝐛𝐲𝑨𝒔𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝟒. 𝟐) 

= ∫ 𝐸(𝑌(𝑎, 1,𝑚)|𝐴 = 𝑎, 𝑌𝑝 = 1,𝑀 = 𝑚, 𝐶 = 𝑐)𝑓(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶 = 𝑐)
𝑚,𝑐

    

𝑓(𝑀(𝑎∗, 𝑌𝑝 = 1) = 𝑚|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶 = 𝑐)𝑓(𝑐)𝑑𝑚𝑑𝑐 

(𝐛𝐲𝑨𝒔𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝒔𝟒. 𝟑&𝟒. 𝟓)                         



= ∫ 𝐸(𝑌|𝐴 = 𝑎, 𝑌𝑝 = 1,𝑀 = 𝑚)
𝑚,𝑐

𝑓(𝑀 = 𝑚|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶 = 𝑐) 

𝑓(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶 = 𝑐)𝑓(𝑐)𝑑𝑚𝑑𝑐 

(𝐛𝐲𝒄𝒐𝒏𝒔𝒊𝒔𝒕𝒆𝒏𝒄𝒚) 

Thus, 𝜙(𝑎, 𝑎∗) can be identified as 𝑄(𝑎, 𝑎∗) for any 𝑎 and 𝑎∗. 

 

3. Proof of Theorem 3 

𝜓(𝑎, 𝑎∗) ≡ E (𝑌(𝑎, 𝑌𝑝(𝑎),𝑀(𝑎∗, 𝑌𝑝(𝑎
∗)))) 

= E(𝑌(𝑎, 𝑌𝑝(𝑎),𝑀(𝑎∗, 𝑌𝑝(𝑎
∗)))|𝑌𝑝(𝑎) = 1)𝑃(𝑌𝑝(𝑎) = 1)  

+E(𝑌(𝑎, 𝑌𝑝(𝑎),𝑀(𝑎∗, 𝑌𝑝(𝑎
∗)))|𝑌𝑝(𝑎) = 0)𝑃(𝑌𝑝(𝑎) = 0) 

= E(𝑌(𝑎, 𝑌𝑝(𝑎) = 1,𝑀(𝑎∗, 𝑌𝑝(𝑎
∗) = 1))|𝑌𝑝(𝑎) = 1)𝑃(𝑌𝑝(𝑎) = 1) (∵ 𝒀(𝒀𝒑(𝒂) = 𝟎) = 𝟎) 

= E(𝑌(𝑎, 𝑦𝑝 = 1,𝑀(𝑎∗, 𝑦𝑝 = 1))|𝑌𝑝(𝑎) = 1)𝑃(𝑌𝑝(𝑎) = 1)  

(∵ 𝐝𝐞𝐜𝐫𝐞𝐚𝐬𝐢𝐧𝐠𝐦𝐨𝐧𝐨𝐭𝐨𝐧𝐢𝐜𝐢𝐭𝐲𝐚𝐬𝐬𝐮𝐦𝐩𝐭𝐢𝐨𝐧𝐟𝐨𝐫𝒀𝒑𝐚𝐧𝐝𝒂 ≥ 𝒂∗ 

⇒𝒀𝒑(𝒂
∗) ≥ 𝒀𝒑(𝒂) = 𝟏 

⇒𝒀𝒑(𝒂
∗) = 𝒀𝒑(𝒂) = 𝟏) 

= E (𝑌(𝑎, 𝑦𝑝 = 1,𝑀(𝑎∗, 𝑦𝑝 = 1))𝑌𝑝(𝑎)) (∵ 𝐁𝐢𝐬𝐛𝐢𝐧𝐚𝐫𝐲 ⇒ 𝑬(𝑩𝒀) = 𝑬(𝒀|𝑩 = 𝟏)𝑷(𝑩 = 𝟏)) 

= ∫ 𝐸(𝑌𝑝(𝑎)𝑌(𝑎, 1,𝑚)|𝐶 = 𝑐)𝑓(𝑐)𝑑𝑐
𝑐

  

= ∫ 𝐸(𝑌𝑝(𝑎)𝑌(𝑎, 1,𝑚)|𝑀(𝑎∗, 𝑦𝑝 = 1) = 𝑚, 𝐶 = 𝑐)𝑓(𝑀(𝑎∗, 𝑦𝑝 = 1) = 𝑚)𝑓(𝑐)𝑑𝑚𝑑𝑐
𝑚,𝑐

  

= ∫ 𝐸(𝑌𝑝(𝑎)𝑌(𝑎, 1,𝑚)|𝐶 = 𝑐)𝑓(𝑀(𝑎∗, 𝑌𝑝 = 1) = 𝑚)𝑓(𝑐)𝑑𝑚𝑑𝑐
𝑚,𝑐

 (𝐛𝐲𝑨𝒔𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝟒. 𝟒) 

= ∫ 𝐸(𝑌𝑝(𝑎)𝑌(𝑎, 1,𝑚)|𝐴 = 𝑎, 𝐶 = 𝑐)𝑓(𝑀(𝑎∗, 𝑌𝑝 = 1) = 𝑚)𝑓(𝑐)𝑑𝑚𝑑𝑐
𝑚,𝑐

  

(𝐛𝐲𝑨𝒔𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝟒. 𝟏) 

= ∫ 𝐸(𝑌𝑝𝑌(𝑎, 1,𝑚)|𝐴 = 𝑎, 𝐶 = 𝑐)𝑓(𝑀(𝑎∗, 𝑌𝑝 = 1) = 𝑚)𝑓(𝑐)𝑑𝑚𝑑𝑐
𝑚,𝑐

 (𝐛𝐲𝒄𝒐𝒏𝒔𝒊𝒔𝒕𝒆𝒏𝒄𝒚) 

= ∫ 𝐸(𝑌(𝑎, 1,𝑚)|𝐴 = 1, 𝑌𝑝 = 1, 𝐶 = 𝑐)𝑓(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶 = 𝑐)
𝑚,𝑐

  

𝑓(𝑀(𝑎∗, 𝑌𝑝 = 1) = 𝑚)𝑓(𝑐)𝑑𝑚𝑑𝑐  

= ∫ 𝐸(𝑌(𝑎, 1,𝑚)|𝐴 = 𝑎, 𝑌𝑝 = 1,𝑀 = 𝑚, 𝐶 = 𝑐)𝑓(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶 = 𝑐)
𝑚,𝑐

  

                     𝑓(𝑀(𝑎∗, 𝑌𝑝 = 1) = 𝑚)𝑓(𝑐)𝑑𝑚𝑑𝑐  

(𝐛𝐲𝑨𝒔𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝟒. 𝟐) 

= ∫ 𝐸(𝑌(𝑎, 1,𝑚)|𝐴 = 𝑎, 𝑌𝑝 = 1,𝑀 = 𝑚, 𝐶 = 𝑐)𝑓(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶 = 𝑐)
𝑚,𝑐

    

𝑓(𝑀(𝑎∗, 𝑌𝑝 = 1) = 𝑚|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶 = 𝑐)𝑓(𝑐)𝑑𝑚𝑑𝑐 

(𝐛𝐲𝑨𝒔𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝒔𝟒. 𝟑&𝟒. 𝟓)                         



= ∫ 𝐸(𝑌|𝐴 = 𝑎, 𝑌𝑝 = 1,𝑀 = 𝑚)
𝑚,𝑐

𝑓(𝑀 = 𝑚|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶 = 𝑐) 

𝑓(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶 = 𝑐)𝑓(𝑐)𝑑𝑚𝑑𝑐 

(𝐛𝐲𝒄𝒐𝒏𝒔𝒊𝒔𝒕𝒆𝒏𝒄𝒚) 

Thus, 𝜓(𝑎, 𝑎∗) can be identified as 𝑄(𝑎, 𝑎∗) for 𝑎 ≥ 𝑎∗. 

 

4. Proof of Lemma 1 

𝑄𝑇(𝑎, 𝑎
∗) = 𝑙𝑜𝑔𝜆 (𝑇 (𝑎, 𝑌𝑝(𝑎),𝑀 (𝑎∗, 𝑌𝑝(𝑎))) ; 𝑡) 

= 𝑙𝑜𝑔
𝑓 (𝑇 (𝑎, 𝑌𝑝(𝑎),𝑀 (𝑎∗, 𝑌𝑝(𝑎))) ; 𝑡)

𝑆 (𝑇 (𝑎, 𝑌𝑝(𝑎),𝑀 (𝑎∗, 𝑌𝑝(𝑎))) ; 𝑡)
 

= 𝑙𝑜𝑔
∫ 𝑓(𝑇 = 𝑡|𝑎,𝑚, 𝑐, 𝑦𝑝 = 1)𝑓(𝑦𝑝 = 1|𝑎, 𝑐)𝑓(𝑀 = 𝑚|𝑎∗, 𝑐, 𝑦𝑝 = 1)𝑓(𝑐)𝑑𝑚𝑑𝑐
𝑐,𝑚

∫ 𝑆(𝑇 = 𝑡|𝑎,𝑚, 𝑐, 𝑦𝑝 = 1)𝑓(𝑦𝑝 = 1|𝑎, 𝑐)𝑓(𝑀 = 𝑚|𝑎∗, 𝑐, 𝑦𝑝 = 1)𝑓(𝑐)𝑑𝑚𝑑𝑐
𝑐,𝑚

 

= 𝑙𝑜𝑔
∫ 𝑒

−𝛬(𝑡|𝑎,𝑚, 𝑐, 𝑦𝑝 = 1)
𝜆(𝑡|𝑎,𝑚, 𝑐, 𝑦𝑝 = 1)𝑓(𝑦𝑝 = 1|𝑎, 𝑐)𝑓(𝑀 = 𝑚|𝑎∗, 𝑐, 𝑦𝑝 = 1)𝑓(𝑐)𝑑𝑚𝑑𝑐

𝑐,𝑚

∫ 𝑒
−𝛬(𝑡|𝑎,𝑚, 𝑐, 𝑦𝑝 = 1)

𝑓(𝑦𝑝 = 1|𝑎, 𝑐)𝑓(𝑀 = 𝑚|𝑎∗, 𝑐, 𝑦𝑝 = 1)𝑓(𝑐)𝑑𝑚𝑑𝑐
𝑐,𝑚

 

(∵𝑆(𝑡) = 𝑒𝑥𝑝(−𝛬(𝑡)) and 𝑓(𝑡) = 𝑆(𝑡)𝜆(𝑡) = 𝑒𝑥𝑝(−𝛬(𝑡))𝜆(𝑡)  

≈ 𝑙𝑜𝑔
∫ 𝜆(𝑡|𝑎,𝑚, 𝑐, 𝑦𝑝 = 1)𝑓(𝑦𝑝 = 1|𝑎, 𝑐)𝑓(𝑀 = 𝑚|𝑎∗, 𝑐, 𝑦𝑝 = 1)𝑓(𝑐)𝑑𝑚𝑑𝑐
𝑐,𝑚

∫ 𝑓(𝑦𝑝 = 1|𝑎, 𝑐)𝑓(𝑀 = 𝑚|𝑎∗, 𝑐, 𝑦𝑝 = 1)𝑓(𝑐)𝑑𝑚𝑑𝑐
𝑐,𝑚

 

(by assuming outcome is rare, 𝑒−𝛬(𝑡|𝑎,𝑚, 𝑐, 𝑦𝑝 = 1) ≈ 1  

= 𝑙𝑜𝑔(𝜗𝑇
1(𝑎, 𝑎∗)/𝜗𝑇

2(𝑎, 𝑎∗)), 

where   

𝜗𝑇
1(𝑎, 𝑎∗) = ∫ 𝜆(𝑡|𝑎,𝑚, 𝑐, 𝑦𝑝 = 1)𝑓(𝑦𝑝 = 1|𝑎, 𝑐)𝑓(𝑀 = 𝑚|𝑎∗, 𝑐, 𝑦𝑝 = 1)𝑓(𝑐)𝑑𝑚𝑑𝑐

𝑐,𝑚
, and  

𝜗𝑇
2(𝑎, 𝑎∗) = ∫ 𝑓(𝑦𝑝 = 1|𝑎, 𝑐)𝑓(𝑀 = 𝑚|𝑎∗, 𝑐, 𝑦𝑝 = 1)𝑓(𝑐)𝑑𝑚𝑑𝑐

𝑐,𝑚
.  

 



Web Appendix C 
 

1. Regression-based estimator for continuous mediator M 

We assumed that given 𝐴 = 𝑎∗, 𝐶 = 𝑐, and 𝑌𝑝 = 1, 𝑀 follows a regression model with mean 

𝛽0 + 𝛽𝐴𝑎
∗ + 𝛽𝐶𝑐 and variance 𝜎𝑀

2 . Thus, we have  

𝑄(𝑎, 𝑎∗)  

= ∫ 𝐸[𝑌|𝐴 = 𝑎, 𝑌𝑝 = 1,𝑀 = 𝑚, 𝐶 = 𝑐]𝑓(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶 = 𝑐)
𝑚,𝑐

  

𝑓𝑀|𝐴,𝐶(𝑀 = 𝑚|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶 = 𝑐)𝑓(𝑐)𝑑𝑚𝑑𝑐 

= ∫ 𝑒𝑥𝑝𝑖𝑡(𝛼0 + 𝛼𝐴𝑎 + 𝛼𝐶𝑐)𝑐
∫ 𝑒𝑥𝑝𝑖𝑡(𝜃0 + 𝜃𝐴𝑎 + 𝜃𝑀𝑚 + 𝜃𝐶𝑐)𝑚

  

1/(√2𝜋𝜎𝑀)exp(−(𝑚 − (𝛽0 + 𝛽𝐴𝑎
∗ + 𝛽𝐶𝑐))

2
/2𝜎𝑀

2 )𝑓(𝑐)𝑑𝑚𝑑𝑐 

Since above formula does not have closed form, we derived that approximate value by using 

Monte-Carlo method. 

 

2. Proof of Theorem 4 

𝑄(𝑎, 𝑎∗) 

= ∬ 𝐸(𝑌|𝐴 = 𝑎, 𝑌𝑝 = 1,𝑀 = 𝑚, 𝐶 = 𝑐)𝑓(𝑀 = 𝑚|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶 = 𝑐)
𝑐,𝑚

  

× 𝑓(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶 = 𝑐)𝑓(𝐶 = 𝑐) 

= ∬ 𝐸(𝑌|𝐴 = 𝑎, 𝑌𝑝 = 1,𝑀 = 𝑚, 𝐶 = 𝑐)𝑓(𝑀 = 𝑚|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶 = 𝑐)
𝑐,𝑚

𝑓(𝑌𝑝=1,𝐴=𝑎,𝐶=𝑐)

𝑓(𝐴=𝑎|𝐶=𝑐)
  

=∭ 𝑦𝑓(𝑦|𝐴 = 𝑎, 𝑌𝑝 = 1,𝑀 = 𝑚, 𝐶 = 𝑐)
𝑦,𝑐,𝑚

  

×
𝑓(𝑀 = 𝑚|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶 = 𝑐)

𝑓(𝑀 = 𝑚|𝐴 = 𝑎, 𝑌𝑝 = 1, 𝐶 = 𝑐)𝑓(𝐴 = 𝑎|𝐶 = 𝑐)
𝑓(𝑀 = 𝑚, 𝑌𝑝 = 1, 𝐴 = 𝑎, 𝐶 = 𝑐)  

=∭ 𝑦
𝑓(𝑀 = 𝑚|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶 = 𝑐)

𝑓(𝑀 = 𝑚|𝐴 = 𝑎, 𝑌𝑝 = 1, 𝐶 = 𝑐)𝑓(𝐴 = 1|𝐶 = 𝑐)𝑦,𝑐,𝑚
  

× 𝑓(𝑌 = 𝑦,𝑀 = 𝑚, 𝑌𝑝 = 1, 𝐴 = 𝑎, 𝐶 = 𝑐)  

= ∬ ∭ 𝑦
𝐼(𝐴=𝑎)

𝑓(𝐴 = 𝑎|𝐶 = 𝑐)𝑦,𝑐,𝑚𝑎,𝑦𝑝

𝑓(𝑀 = 𝑚|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶 = 𝑐)𝐼(𝑌𝑝=1)

𝑓(𝑀 = 𝑚|𝐴 = 𝑎, 𝑌𝑝 = 1, 𝐶 = 𝑐)
  

× 𝑓(𝑌 = 𝑦,𝑀 = 𝑚, 𝑌𝑝 = 1, 𝐴 = 𝑎, 𝐶 = 𝑐)  

= 𝐸 [
𝑓(𝑀 = 𝑚|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶)𝐼(𝐴=𝑎)𝐼(𝑌𝑝=1)

𝑓(𝑀 = 𝑚|𝐴 = 𝑎, 𝑌𝑝 = 1, 𝐶)𝑓(𝐴 = 𝑎|𝐶)
𝑌]  

 

 



3. Proof of Theorem 5 
 
E𝑌,𝑀|𝐴,𝐶,𝑌𝑝=1

[𝑈𝑇𝐸(𝝀)] 

= E𝑌,𝑀|𝐴,𝐶,𝑌𝑝=1
[𝑤(𝑎, 𝑐, �̂�) × Γ𝑇𝐸(𝑎, 𝑐, 𝝀){𝑌 − 𝑔(𝜇𝑇𝐸(𝝀; 𝑎, 𝑐))}] 

= Γ𝑇𝐸(𝑎, 𝑐, 𝝀)E𝑌,𝑀|𝐴,𝐶,𝑌𝑝=1
[𝑤(𝑎, 𝑐, �̂�)(𝑌 − 𝑔(𝜇𝑇𝐸(𝝀; 𝑎, 𝑐)))] 

= Γ𝑇𝐸(𝑎, 𝑐, 𝝀){E𝑌,𝑀|𝐴,𝐶,𝑌𝑝=1
[𝑤(𝑎, 𝑐, �̂�)𝑌] − E𝑌,𝑀|𝐴,𝐶,𝑌𝑝=1

[𝑤(𝑎, 𝑐, �̂�)𝑔(𝜇𝑇𝐸(𝝀; 𝑎, 𝑐))]} 

= Γ𝑇𝐸(𝑎, 𝑐, 𝝀){∫ 𝐸(𝑌|𝐴 = 𝑎,𝑀 = 𝑚, 𝐶 = 𝑐, 𝑌𝑝 = 1)𝑓(𝑀 = 𝑚|𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌𝑝 = 1)
𝑚

 

𝑓(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶 = 𝑐) − 𝑔(𝜇𝑇𝐸(𝝀; 𝑎, 𝑐))𝑃𝑦𝑝=1(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶 = 𝑐)} 

= Γ𝑇𝐸(𝑎, 𝑐, 𝝀) (𝜑(𝑎, 𝑎) − 𝑔(𝜇𝑇𝐸(𝝀; 𝑎, 𝑐))𝑃𝑦𝑝=1(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶 = 𝑐)) = 0 

 
 
 

4. Proof of Theorem 6 
 

E𝑌,𝑀|𝐴,𝐶,𝑌𝑝=1
[𝑈𝐷𝐸(𝝂)] 

= E𝑌,𝑀|𝐴,𝐶,𝑌𝑝=1 [OR(𝑀 = 𝑚,𝐴 = 𝑎|𝐶, 𝑦𝑝 = 1, �̂�, �̂�)
−1

× Γ𝐷𝐸(𝑎, 𝑐, 𝝂){𝑌 − 𝑔(𝜇𝐷𝐸(𝝂; 𝑎, 𝑐))}]  

= Γ𝐷𝐸(𝑎, 𝑐, 𝝂)E𝑌,𝑀|𝐴,𝐶,𝑌𝑝=1 [OR(𝑀 = 𝑚,𝐴 = 𝑎|𝐶, 𝑦𝑝 = 1, �̂�, �̂�)
−1
{𝑌 − 𝑔(𝜇𝐷𝐸(𝝂; 𝑎, 𝑐))}] 

= Γ𝐷𝐸(𝑎, 𝑐, 𝝂){E𝑌,𝑀|𝐴,𝐶,𝑌𝑝=1 [OR(𝑀 = 𝑚,𝐴 = 𝑎|𝐶, 𝑦𝑝 = 1, �̂�, �̂�)
−1
𝑌] 

−E𝑌,𝑀|𝐴,𝐶,𝑌𝑝=1 [OR(𝑀 = 𝑚,𝐴 = 𝑎|𝐶, 𝑦𝑝 = 1, �̂�, �̂�)
−1
𝑔(𝜇𝐷𝐸(𝝂; 𝑎, 𝑐))]} 

= Γ𝐷𝐸(𝑎, 𝑐, 𝝂)
𝑓𝑀|𝐴,𝐶,𝑌𝑝(𝑀 = 𝑚0|𝐴, 𝑌𝑝 = 1, 𝐶)

𝑓𝑀|𝐴,𝐶,𝑌𝑝(𝑀 = 𝑚0|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶)
[𝜙(𝑎, 0) 

− 𝑔(𝜇𝐷𝐸(𝝂; 𝑎, 𝑐))𝑃𝑦𝑝=1(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶 = 𝑐)] = 0 

and 

E𝑌,𝑀|𝐴,𝐶,𝑌𝑝=1 [OR(𝑀 = 𝑚,𝐴 = 𝑎|𝐶, 𝑦𝑝 = 1, �̂�, �̂�)
−1
𝑔(𝜇𝐷𝐸(𝝂; 𝑎, 𝑐))]  

= 𝑔(𝜇𝐷𝐸(𝝂; 𝑎, 𝑐))𝑃𝑦𝑝=1(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶 = 𝑐) ×  

∫
𝑓(𝑀|𝐴=𝑎∗,𝐶,𝑌𝑝=1)𝑓(𝑀=𝑚0|𝐴,𝐶,𝑌𝑝=1)

𝑓(𝑀|𝐴,𝐶,𝑌𝑝=1)𝑓(𝑀=𝑚0|𝐴=𝑎∗,𝐶,𝑌𝑝=1)𝑦,𝑚
× 𝑓(𝑦,𝑚|𝐴, 𝐶, 𝑌𝑝 = 1)  

= 𝑔(𝜇𝐷𝐸(𝝂; 𝑎, 𝑐))
𝑓(𝑀=𝑚0|𝐴,𝐶,𝑌𝑝=1)𝑃𝑦𝑝=1(𝑌𝑝=1|𝐴=𝑎,𝐶=𝑐)

𝑓(𝑀=𝑚0|𝐴=𝑎∗,𝐶,𝑌𝑝=1)
×  

∫
𝑓(𝑀|𝐴=𝑎∗,𝐶,𝑌𝑝=1)

𝑓(𝑀|𝐴=𝑎,𝐶,𝑌𝑝=1)𝑦,𝑚
× 𝑓(𝑚|𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌𝑝 = 1)𝑓(𝑦|𝑀 = 𝑚,𝐴 = 𝑎, 𝐶 = 𝑐, 𝑌𝑝 = 1)  

= 𝑔(𝜇𝐷𝐸(𝝂; 𝑎, 𝑐))
𝑓(𝑀=𝑚0|𝐴,𝐶,𝑌𝑝=1)𝑃𝑦𝑝=1(𝑌𝑝=1|𝐴=𝑎,𝐶=𝑐)

𝑓(𝑀=𝑚0|𝐴=𝑎∗,𝐶,𝑌𝑝=1)
 



Web Appendix D 
 

1. Results of simulation study 1 
 

 

 

 

 
Web Figure 1. Estimated causal effects performance among different methods for scenario 2. The row of the 

panel represents different measurements, and the column represents different causal effects. The x-axis of each 

plot is the probability of 𝑌𝑝 = 1 , and the y-axis represents the quantity of measurements. The complete case 

approach, IORW, IPW, and Reg methods are colored by red, green, blue, and purple, respectively. Abbreviations: 

NIE, nature indirect effect; NDE, nature direct effect; TE, total effect; RESE, rooted empirical standard error; 

RMSE rooted mean square error; IORW, inverse odds ratio weighting; IPW, inverse probability weighting; Reg, 

regression-based method. 

 

 



 
Web Figure 2. Estimated causal effects performance among different methods for scenario 3. The row of the 

panel represents different measurements, and the column represents different causal effects. The x-axis of each 

plot is the probability of 𝑌𝑝 = 1 , and the y-axis represents the quantity of measurements. The complete case 

approach, IORW, IPW, and Reg methods are colored by red, green, blue, and purple, respectively. Abbreviations: 

NIE, nature indirect effect; NDE, nature direct effect; TE, total effect; RESE, rooted empirical standard error; 

RMSE rooted mean square error; IORW, inverse odds ratio weighting; IPW, inverse probability weighting; Reg, 

regression-based method. 

 

 

 

2. Results of simulation study 2 
 

Study 2 also employed a sample of size 10,000 with one binary mediator through Cox’s 

proportional hazards model. The data for each variable were simulated as follows: 

𝐶~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝 = 0.5)  

A~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝 = 0.5)  

𝑌𝑝~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖( 𝑝1), 𝑝1 = 𝑒𝑥𝑝𝑖𝑡(𝛼0 + 𝛼𝐴𝐴 + 𝛼𝐶𝐶) 

𝑀 = {
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑,  𝑖𝑓 𝑌𝑝 = 0

~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖( 𝑝2),  𝑖𝑓 𝑌𝑝 = 1
,   𝑝2 = 𝑒𝑥𝑝𝑖𝑡(𝛽0 + 𝛽𝐴𝐴 + 𝛽𝐶C )  

Under 𝑌𝑝 = 1, the event times (T  are generated according to a Weibull distribution as  

𝑇 = −𝑙𝑜𝑔(𝑢)/(0.01 ×𝑒𝜇𝑇 ), 𝑢~Uniform(0,1) where 

𝜇𝑇 = 𝛾𝐴𝐴+ 𝛾𝑀𝑀+ 𝛾𝐶𝐶, 

The parameters were set as 𝛾𝐴 = 0.2, 𝛾𝑀 = 0.5, and 𝛾𝐶 = 0.5. The censoring times (CT  are 

randomly drawn from an exponential distribution with a rate of 0.1. As a result, the observed 



survival times is defined as the minimum of T and CT. If 𝑌𝑝 = 0, then 𝑇 = 0. 

 The result illustrates in Web Figure 3 by comparing the complete case approach. The 

figure shows the normalized biases of the estimators for the survival mediation formulas for 

various probabilities of 𝑌𝑝 = 1. Consequently, the result reveals that the proposed Cox model 

performs better that the complete case approach. Notably, as mentioned in Section 5.1, we 

adopt the normalized absolute bias, which were divided by 𝑃(𝑌𝑝 = 1) , to enable a fair 

comparison.  

 

 

 

 

Web Figure 3. Absolute values of the normalized biases for the two methods for survival time. The x axis of 

each plot represents the probability of 𝑌𝑝 = 1, and the y axis represents the absolute value of the normalized biases. 

The proposed Cox model and the complete case approach are indicated by red and green lines, respectively. 



Web Appendix E 
 

Data description and data preprocessing 

In REVEAL-HBV, a total of 23,820 residents aged 30–65 years from seven townships of 

Taiwan were recruited from 1991 to 1992 and followed up to 2008, with 477 incident cases of 

HCC developing subsequently. They provided written informed consent for the questionnaire 

interview, health examinations, biospecimen collection, and data linkage of health status with 

death certification profiles and national cancer registry. Blood samples collected at enrollment 

were tested for seromarkers, viral load of HBV, and HCV antibody. We regard survival status 

as the outcome of interest (Y , the status of HCV infection as the exposure (A , and age and 

gender as confounders (C . In this study, the population is restricted to HBV-positive patients 

and elevated viral load of HBV defined as viral load > 10,000 copies/ml is regarded as M. Yp 

is used to record the survival status before measuring the value of the mediator. The total 

number of HBV-positive patients is 4,155. After removing the NA values, there are totally 

3,894 samples in the analysis. The frequencies of variables are shown in Web Table 1. 

 

Web Table 1. Frequency table 

Variable Frequency 

A: 1: 3696(94.92% ; 0: 198(5.08%  

M: 1: 1434(36.83% ; 0: 2021(51.9% ; Truncation (i.e. Yp =0 : 439(11.27%  

Yp: 1: 3455(88.73% ; 0: 439(11.27%  

Y: 1: 3254(83.56% ; 0: 640(16.44%  

 

 


