35 research outputs found

    AI-Driven Anonymization: Protecting Personal Data Privacy While Leveraging Machine Learning

    Full text link
    The development of artificial intelligence has significantly transformed people's lives. However, it has also posed a significant threat to privacy and security, with numerous instances of personal information being exposed online and reports of criminal attacks and theft. Consequently, the need to achieve intelligent protection of personal information through machine learning algorithms has become a paramount concern. Artificial intelligence leverages advanced algorithms and technologies to effectively encrypt and anonymize personal data, enabling valuable data analysis and utilization while safeguarding privacy. This paper focuses on personal data privacy protection and the promotion of anonymity as its core research objectives. It achieves personal data privacy protection and detection through the use of machine learning's differential privacy protection algorithm. The paper also addresses existing challenges in machine learning related to privacy and personal data protection, offers improvement suggestions, and analyzes factors impacting datasets to enable timely personal data privacy detection and protection.Comment: 9 pages, 6 figure

    The Random Forest Model for Analyzing and Forecasting the US Stock Market in the Context of Smart Finance

    Full text link
    The stock market is a crucial component of the financial market, playing a vital role in wealth accumulation for investors, financing costs for listed companies, and the stable development of the national macroeconomy. Significant fluctuations in the stock market can damage the interests of stock investors and cause an imbalance in the industrial structure, which can interfere with the macro level development of the national economy. The prediction of stock price trends is a popular research topic in academia. Predicting the three trends of stock pricesrising, sideways, and falling can assist investors in making informed decisions about buying, holding, or selling stocks. Establishing an effective forecasting model for predicting these trends is of substantial practical importance. This paper evaluates the predictive performance of random forest models combined with artificial intelligence on a test set of four stocks using optimal parameters. The evaluation considers both predictive accuracy and time efficiency.Comment: 10 pages, 8 figure

    Effects of Radiation Reabsorption on the Laminar Flame Speed and NO Emission during Aviation Kerosene Combustion at Elevated Pressures

    Get PDF
    Increasing attention has been paid on combustion stability and pollution emission of aviation kerosene due to the emerging interests on supersonic combustion scramjets. Whereas the vitiation component H2O introduced by hydrogen-fueled heaters in high-enthalpy vitiated air during ground experiments has a considerable influence on kerosene combustion, especially through its radiation effect, which needs to be further investigated. In this paper, the radiation reabsorption effects on laminar flame speeds and NO emissions during RP-3/H2O/O2/N2 combustion was assessed numerically over a wide range of equivalence ratio and pressure (ϕ = 0.7–1.4 and P = 1–15 atm) using detailed chemical and radiation models. The surrogate model of RP-3 consisted of vol. 25% 1,3,5-trimethylbenzene (C9H12), 46.31% n-decane (C10H22) and 28.69% iso-dodecane (IC12H26), while the vitiated air had 12% H2O. It was revealed that the radiation reabsorption of H2O in the vitiated air had significant impact on the accurate simulation of laminar flame speeds. As equivalence ratios varied, the role of radiation reabsorption on laminar flame speeds was most pronounced at ϕ = 0.7. As the key radical, the generation of H through the reversed step of CH2OH + H = CH3 + OH was chemically inhibited due to radiation. The radiation reabsorption effect on flame speeds was strengthened with rising pressures, with the reaction H + O2 = O + OH dominant at the pressure range 1–10 atm. In contrast, a slight increase in the impact on laminar flame speeds between 10 and 15 atm was controlled by direct radiative effect. Finally, for NO emission, the reduction of downstream temperature caused by radiative heat loss and the increment of radical concentrations induced by preheating determined radiation reabsorption effects on NO generation

    Neuroprotective effects of etanercept on diabetic retinopathy via regulation of the TNF-α/NF-κB signaling pathway

    Get PDF
    Purpose: To study the influence of etanercept on diabetic retinopathy in rats via tumor necrosis factor alpha (TNF-α)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. Methods: Thirty-six Sprague-Dawley (SD) rats were randomly divided into normal, model and etanercept groups. The expression of Caspase-3 was determined by immunohistochemistry, while the relative protein and mRNA expression levels of TNF-α and NF-κB were determined by Western blotting and quantitative polymerase chain reaction, respectively. Besides, the contents of TNF-α and interleukin-1 beta (IL-1β) were evaluated using enzyme-linked immunosorbent assay (ELISA), while cell apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). Results: Immunohistochemical studies showed that the mean optical density of tissues positive for caspase-3 in both the model and etanercept groups were significantly higher than in the normal group (p < 0.05), while the mean optical density in the etanercept group was significantly lower than that in the model group (p < 0.05). The protein expression levels of TNF-α and NF-κB in the etanercept group were significantly lower than those in the model group (p < 0.05). Furthermore, mRNA expressions of TNF-α and NF-κB declined in the etanercept group (p < 0.05); in addition, TNF-α, and IL-1β levels in the etanercept group were lower than in the model group (p < 0.05). Cell apoptosis in the etanercept group was also lower than in the model group. Conclusion: Etanercept suppresses TNF-α/NF-κB signaling pathway thereby repressing inflammation and cell apoptosis in diabetic retinopathy rats. Therefore, etenercept’s neuroprotective effect may potentially be useful in developing a suitable therapy for diabetic neuropathy

    Latissimus dorsi flap – the main force in breast reconstruction for breast tumor in Chinese population

    Get PDF
    BackgroundThe latissimus dorsi flap (LDF) is the most commonly used autologous flap for breast reconstruction (BR) in China. We conducted this study to explore the current status of BR using LDF with/without implants.MethodsThis study was a single-center retrospective study that included breast tumor patients who underwent LDF breast reconstruction at Fudan University Shanghai Cancer Center (FUSCC) between 2000 and 2021.ResultsWe analyzed 4918 patients who underwent postmastectomy BR, including 1730 patients (35.2%) with autologous flaps. LDF was used for BR in 1093 (22.2%) patients, and an abdominal flap was used in 637 (13.0%) patients. The proportion of LDFs used in autologous BR patients decreased each year and dropped to approximately 65.0% after 2013 due to the increased use of abdominal flaps. Among these patients, 609 underwent extended LDF (ELDF) BR, 455 underwent LDF BR with implants, and 30 received a LDF as a salvage flap due to previous flap or implant failure. Patients who underwent ELDF reconstruction were older and had a higher BMI than those who received a LDF with implants. There was no significant difference in the mean postoperative hospital stay, neoadjuvant chemotherapy rates, or adjuvant radiotherapy rates between the two groups. Major complications requiring surgical intervention occurred in 25 patients (2.29%). There was no significant difference in the incidence of major complications between the two groups (P=0.542).ConclusionsLDF breast reconstruction is a well-developed and safe procedure. The duration of postoperative hospitalization nor the incidence of major complications was affected by implant use

    Impacts of systemic inflammation response index on the prognosis of patients with ischemic heart failure after percutaneous coronary intervention

    Get PDF
    BackgroundAtherosclerosis and cardiovascular diseases are significantly affected by low-grade chronic inflammation. As a new inflammatory marker, the systemic inflammation response index (SIRI) has been demonstrated to be associated with several cardiovascular disease prognoses. This study aimed to investigate the prognostic impact of SIRI in individuals having ischemic heart failure (IHF) following percutaneous coronary intervention (PCI).MethodsThis observational, retrospective cohort study was conducted at a single site. Finally, the research involved 1,963 individuals with IHF who underwent PCI, with a 36-month follow-up duration. Based on the SIRI quartiles, all patients were classified into four groups. Major adverse cardiovascular events (MACEs) were the primary outcomes. Every element of the main endpoint appeared in the secondary endpoints: all-cause mortality, non-fatal myocardial infarction (MI), and any revascularization. Kaplan–Meier survival analysis was conducted to assess the incidence of endpoints across the four groups. Multivariate Cox proportional hazards analysis confirmed the independent impact of SIRI on both the primary and secondary endpoints. The restricted cubic spline (RCS) was used to assess the nonlinear association between the SIRI and endpoints. Subgroup analysis was performed to confirm the implications of SIRI on MACE in the different subgroups.ResultsThe main outcome was much more common in patients with a higher SIRI. The Kaplan–Meier curve was another tool that was used to confirm the favorable connection between SIRI and MACE. SIRI was individually connected to a higher chance of the main outcome according to multivariate analyses, whether or not SIRI was a constant [SIRI, per one−unit increase, hazard ratio (HR) 1.04, 95% confidence interval (95% CI) 1.01–1.07, p = 0.003] or categorical variable [quartile of SIRI, the HR (95% CI) values for quartile 4 were 1.88 (1.47–2.42), p <0.001, with quartile 1 as a reference]. RCS demonstrated that the hazard of the primary and secondary endpoints generally increased as SIRI increased. A non-linear association of SIRI with the risk of MACE and any revascularization (Non-linear P <0.001) was observed. Subgroup analysis confirmed the increased risk of MACE with elevated SIRI in New York Heart Association (NYHA) class III–IV (P for interaction = 0.005).ConclusionIn patients with IHF undergoing PCI, increased SIRI was a risk factor for MACE independent of other factors. SIRI may represent a novel, promising, and low-grade inflammatory marker for the prognosis of patients with IHF undergoing PCI

    Effects of Fines Content on Durability of High-Strength Manufactured Sand Concrete

    No full text
    Manufactured sand is one of the effective ways to alleviate the extreme shortage of natural sand in the construction industry. This paper uses granite and limestone manufactured sand to study the effect of high fines content on the durability of high-strength manufactured sand concrete, and analyzes its influence mechanism by combining macro and micro test methods. The results show that the carbonation depth of manufactured sand concrete is the smallest when the fines content is 10%. When the fines content is less than 15%, the chloride and sulfate impermeability of concrete are improved effectively. Through macroscopic and microscopic tests, it is found that the main reason why fines can improve the durability of concrete is the filling effect. Too much fines will inhibit the hydration of cement and adversely affect the durability of concrete. Therefore, the fines content of high-strength manufactured sand concrete should be controlled within 5~15%, and the durability is the best when the fines content is 10%

    Investigation on Dynamical Mechanics, Energy Dissipation, and Microstructural Characteristics of Cemented Tailings Backfill under SHPB Tests

    No full text
    As mining depth increases, the backfill mining method is more and more widely used in underground mines. The dynamic load generated by the blasting can affect the stability of the cemented tailings backfill (CTB). The CTB samples were prepared to conduct a test of the split Hopkinson pressure bar (SHPB) to investigate the dynamic disturbance of CTB. The present paper discusses dynamical mechanics, energy dissipation, and microstructure analysis of CTB. Micro-computer tomography (micro-CT) scanning of CTB samples after the SHPB test was performed to analyze the evolution of internal cracks. The experimental results showed that when the average strain rate (ASR) increased from 30 to 98 s(-1), the dynamic uniaxial compression strength (DUCS) of the CTB showed a trend of first increasing and decreasing with the increase in ASR. The dynamic stress-strain pre-peak curve of CTB directly enters the linear elastic stage. As ASR increases, the absorbed energy of the CTB shows a trend of first increasing and then decreasing. Moreover, according to the micro-CT scanning results, the crack area of CTB accounts for about 16% of the sample near the incident bar and about 1% near the transmitted bar. The crack area ratio is exponentially related to the specimen height. These findings can provide reasonable dynamical CTB strength data selection for underground pillar mining

    Non-contact Dynamic Capacity-Increasing of Overhead Conductor Based on Cooling Tester (CT)

    No full text
    The traditional dynamic capacity-increasing technology of overhead conductors needs to monitor the operation state of conductors (temperature, sag, etc.), and the relevant sensors are usually installed directly on the surface of conductors. The installation cost is high, and the operating maintenance is complicated. In this paper, a non-contact dynamic capacity-increasing method for overhead conductors based on CT is proposed. Firstly, the theory of the non-contact dynamic capacity-increasing method for conductors is introduced, and a cooling testing device is designed according to the theory. Then, the cooling index is defined to represent the cooling capacity of the object, and the corresponding cooling indexes for the conductors and the CT are calculated based on the steady-state thermal balance equation. By establishing a cooling correlation model for the conductors and the CT, the calculation for the dynamic ampacity of the conductors can be obtained. Finally, the cooling conditions of cooling testing device at different ambient temperatures and wind speeds are calculated through the finite element simulation method. Combined with the dynamic capacityincreasing method proposed in this paper, the corresponding ampacity value are obtained, and the effect of capacity increase is analyzed. The results show that the non-contact dynamic capacity-increasing method based on the CT has obvious effect in capacity-increasing compared with the static ampacity

    Effects of Radiation Reabsorption on the Laminar Flame Speed and NO Emission during Aviation Kerosene Combustion at Elevated Pressures

    Get PDF
    Increasing attention has been paid on combustion stability and pollution emission of aviation kerosene due to the emerging interests on supersonic combustion scramjets. Whereas, the vitiation component H2O introduced by hydrogen-fueled heaters in high-enthalpy vitiated air during ground experiments has a considerable influence on kerosene combustion, especially through its radiation effect, which needs to be further investigated. In this paper, the radiation reabsorption effects on laminar flame speeds and NO emissions during RP-3/H2O/O2/N2 combustion was assessed numerically over a wide range of equivalence ratio and pressure (ϕ = 0.7–1.4 and P = 1–15 atm) using detailed chemical and radiation models. The surrogate model of RP-3 consisted of vol. 25% 1,3,5-trimethylbenzene (C9H12), 46.31% n-decane (C10H22) and 28.69% iso-dodecane (IC12H26), while the vitiated air had 12% H2O. It was revealed that the radiation reabsorption of H2O in the vitiated air had significant impact on the accurate simulation of laminar flame speeds. As equivalence ratios varied, the role of radiation reabsorption on laminar flame speeds was most pronounced at ϕ = 0.7. As the key radical, the generation of H through the reversed step of CH2OH + H = CH3 + OH was chemically inhibited due to radiation. The radiation reabsorption effect on flame speeds was strengthened with rising pressures, with the reaction H + O2 = O + OH dominant at the pressure range 1–10 atm. In contrast, a slight increase in the impact on laminar flame speeds between 10 and 15 atm was controlled by direct radiative effect. Finally, for NO emission, the reduction of downstream temperature caused by radiative heat loss and the increment of radical concentrations induced by preheating determined radiation reabsorption effects on NO generation
    corecore