9,081 research outputs found

    A universal mass-based index defining energy efficiency of different modes of passenger transport

    Get PDF
    Reduction in vehicle weight can significantly reduce energy use in human transportation. However, to gauge efficiency, energy use and weight for a particular vehicle should be related to the number of people being transported while currently there is no convenient means to assess this. Here we statistically analyse the weight, energy consumption, carrying capacity and occupancy level for automobiles, buses, high-speed trains and aircraft. Based on the analysis and inspired by the medical body mass index (BMI), we have proposed a vehicle mass index (VMI), defined as [Formula presented], for the first time enables energy efficiency assessment of different transportations on a global scale, where n a weight sensitivity parameter and A the energy efficiency constant of a theoretically weightless vehicle. We show the VMI ranges and conclude the significant vehicle weight reduction windows to achieve their index lower limits. The possible limits for the VMI and the associated A and n values are also assessed. The concept of VMI could form the basis of a worldwide standard, useful in the current drive for a greener economy

    Localized surface optical phonon mode in the InGaN/GaN multiple-quantum- wells nanopillars: Raman spectrum and imaging

    Get PDF
    An interesting phonon mode at around 685-705 cm -1 was clearly observed in the Raman spectra of InGaN/GaN multiple-quantum-wells nanopillars with different diameters at room temperature. The Raman peak position of this mode is found to show a distinct dependence on the nanopillar size, which is in well agreement with theoretical calculation of the surface optical (SO) phonon modes of nanopillars. Moreover, this kind of SO phonon was evidenced to be located on the pillar surface by using scanning confocal micro-Raman microscopy. Ā© 2011 American Institute of Physics.published_or_final_versio

    Experimental investigation of multi-step stress-relaxation-ageing of 7050 aluminium alloy for different pre-strained conditions

    Get PDF
    A novel insight into the whole two-step stress relaxation ageing process during T74 multiā€“step ageing treatment (120 Ā°C for 6 h and subsequently 177 Ā°C for 7 h), which is typically experienced by extra-large aircraft components that contain high residual stresses, has been established. Stress relaxation ageing (SRA) tests, tensile tests and transmission electron microscopy (TEM) were performed on AA7050 samples to determine the relationship between internal microstructure and macroscopic behaviour during the stress relaxation and precipitate evolution process. Samples were subjected to SRA at different initial stresses (220ā€“360 MPa) after being pre-strained to different extents (i.e. 0%, 1%, 3%). Room temperature tensile tests were then performed on interrupted SRA test specimens to examine the corresponding strengthening phenomenon. TEM was performed on a selection of peakā€“aged and T74 overā€“aged samples to study the precipitate distribution. At 120 Ā°C typical stress relaxation behaviour was observed and the data follow ed a logarithmic curve. Subsequently at 177 Ā°C, dislocationā€“creep dominated stress relaxation behaviour, with no apparent threshold stress, was observed. The absence of a threshold stress at 177 Ā°C may be attributed to the continuous over-ageing phenomenon. The effect of pre-deformation levels and initial stresses on SRA has also been investigated. Pre-stretching, which creates uniformly distributed dislocations, promotes stress relaxation and ageing. No significant influence of initial stress level on SRA was observed at 120 Ā°C, but noticeable effects were seen at 177 Ā°C. The calculated stress exponent n at 177 Ā°C is found independent of the initial stresses. These findings provide clear scientific guidance for residual stress reduction during the multi-step ageing process of AA7050 and provide the basis for residual stress prediction models

    Targeted mutation of EphB1 receptor prevents development of neuropathic hyperalgesia and physical dependence on morphine in mice

    Get PDF
    EphB receptor tyrosine kinases, which play important roles in synaptic connection and plasticity during development and in matured nervous system, have recently been implicated in processing of pain after nerve injury and morphine dependence. Subtypes of the EphB receptors that may contribute to the neuropathic pain and morphine dependence have not been identified. Here we demonstrate that the subtype EphB1 receptor is necessary for development of neuropathic pain and physical dependence on morphine. The results showed that peripheral nerve injury produced thermal hyperalgesia in wild-type (EphB1+/+) control littermate mice, but not in EphB1 receptor homozygous knockout (EphB1-/-) and heterozygous knockdown (EphB1+/-) mice. Hyperalgesia in the wild-type mice was inhibited by intrathecal administration of an EphB receptor blocking reagent EphB2-Fc (2 Ī¼g). Intrathecal administration of an EphB receptor activator ephrinB1-Fc (1 Ī¼g) evoked thermal hyperalgesia in EphB1+/+, but not EphB1-/- and EphB1+/- mice. Cellularly, nerve injury-induced hyperexcitability of the medium-sized dorsal root ganglion neurons was prevented in EphB1-/- and EphB1+/- mice. In chronically morphine-treated mice, most of the behavioral signs and the overall score of naloxone-precipitated withdrawal were largely diminished in EphB1-/- mice compared to those in the wild-type. These findings indicate that the EphB1 receptor is necessary for development of neuropathic pain and physical dependence on morphine and suggest that the EphB1 receptor is a potential target for preventing, minimizing, or reversing the development of neuropathic pain and opiate dependence

    Inner surface enhanced femtosecond second harmonic generation in thin ZnO crystal tubes

    Get PDF
    2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Modelling the complex evaporated gas flow and its impact on particle spattering during laser powder bed fusion

    Get PDF
    The additive manufacturing (AM) of metals is becoming an increasingly important production process with the potential to replace traditional techniques such as casting. Laser Powder Bed Fusion (LPBF) is used in many applications to print metal parts from powder. The metal powder is heated locally with sufficient laser radiation that the liquid melt easily reaches its boiling temperature, which leads to a metallic vapour jet that can entrain both powder bed particles and molten droplets. The small size of laser-matter interaction site makes a detailed experimental analysis of the process challenging. Synchrotron X-ray imaging experiments are one of the few methods which can capture the dynamic melting and solidification processes. Comparing such experiments with computer simulations of the process is an important approach in order to better understand the manufacturing process and to analyse the influence of process parameters on the evaporated gas jet and the subsequent impact on particle ejection, leading to potentially reduced AM component quality. The melting and solidification of the metal powder is simulated using an Eulerian multiphase approach based on a control volume discretization of powder bed and substrate and a volume of liquid separation from melt and gas phase. The gas phase modelled as an ideal gas reaches velocities up to 100 m/s. Lagrangian particle tracking in the simulation demonstrates that the velocity fields calculated by the Eulerian multi-phase approach in combination with a standard drag-force model lead to particle accelerations in good agreement with those measured experimentally. In order to avoid numerical laborious Lagrangian calculations, a direct method to compare an Eulerian multiphase simulation with synchrotron X-ray experiments was introduced and validated. This approach is used to analyse the influence of process parameters including laser power and laser speed on the maximal acceleration of particles from the melt pool area. While the particle acceleration increases linearly with line energy in the conduction mode, a linear decrease of the acceleration with increasing line energy can be found in the transition mode before the acceleration increases again with line energy in the keyhole mode

    A Cooperative Emergency Navigation Framework using Mobile Cloud Computing

    Full text link
    The use of wireless sensor networks (WSNs) for emergency navigation systems suffer disadvantages such as limited computing capacity, restricted battery power and high likelihood of malfunction due to the harsh physical environment. By making use of the powerful sensing ability of smart phones, this paper presents a cloud-enabled emergency navigation framework to guide evacuees in a coordinated manner and improve the reliability and resilience in both communication and localization. By using social potential fields (SPF), evacuees form clusters during an evacuation process and are directed to egresses with the aid of a Cognitive Packet Networks (CPN) based algorithm. Rather than just rely on the conventional telecommunications infrastructures, we suggest an Ad hoc Cognitive Packet Network (AHCPN) based protocol to prolong the life time of smart phones, that adaptively searches optimal communication routes between portable devices and the egress node that provides access to a cloud server with respect to the remaining battery power of smart phones and the time latency.Comment: This document contains 8 pages and 3 figures and has been accepted by ISCIS 2014 (29th International Symposium on Computer and Information Sciences

    Synthesis and characterization of folate-poly(ethylene glycol) chitosan graft-polyethylenimine as a non-viral carrier for tumor-targeted gene delivery

    Get PDF
    The use of chitosan and chitosan derivatives for gene delivery is limited due to the low transfection efficiency and difficulty in transfecting into a variety of cell types, including some cancer cells overexpressing folate receptor (FRs). In order to solve this problem, folate (FA) and poly(ethylene glycol) (PEG) was conjugated to chitosan-graft-polyethylenimine (CHI-g-PEI) to enhance water-solubility and the transfection efficiency. In the present study, a cell specific targeting molecule FA was linked on PEG and then grafted the FA-PEG onto CHI-g-PEI. The FA-PEG-grafted CHI-g-PEI (FA-PEG-CHI-g-PEI) effectively condensed the plasmid DNA (pDNA) into nanoparticles with positive surface charge under the suitable nitrogen/phosphorus (N/P) ratio. In vitro, transfection efficiency of the FA-PEG-CHI-g-PEI /pDNA complex in 293T cells and LoVo cells (FRs over-expressing cell lines) increased with increasing N/P ratio under N/P = 15 and was more than 50%, but no significant difference in human lung carcinoma cells (A549) cells (FRs deficient cell lines). Importantly, in vivo luciferase expression showed that the efficiency of FA-PEG-CHI-g-PEI -mediated transfection (50 Ī¼g luciferase plasmid (pLuc), N/P ratio = 15) was comparable to that of adenovirus-mediated luciferase transduction (1 Ɨ 109 pfu) in melanomabearing mice. It was concluded that FA-PEG-CHI-g-PEI, which has improved transfection efficiency and FRs specificity in vitro and in vivo, may be useful in gene therapy.Key words: Folate poly(ethylene glycol)-chitosan-grafted-polyethylenimine (FA-PEG-CHI-g-PEI), gene transfection, non-virus vector, in vitro, in viv

    Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy.

    Get PDF
    Neocortical epilepsy is frequently drug-resistant. Surgery to remove the epileptogenic zone is only feasible in a minority of cases, leaving many patients without an effective treatment. We report the potential efficacy of gene therapy in focal neocortical epilepsy using a rodent model in which epilepsy is induced by tetanus toxin injection in the motor cortex. By applying several complementary methods that use continuous wireless electroencephalographic monitoring to quantify epileptic activity, we observed increases in high frequency activity and in the occurrence of epileptiform events. Pyramidal neurons in the epileptic focus showed enhanced intrinsic excitability consistent with seizure generation. Optogenetic inhibition of a subset of principal neurons transduced with halorhodopsin targeted to the epileptic focus by lentiviral delivery was sufficient to attenuate electroencephalographic seizures. Local lentiviral overexpression of the potassium channel Kv1.1 reduced the intrinsic excitability of transduced pyramidal neurons. Coinjection of this Kv1.1 lentivirus with tetanus toxin fully prevented the occurrence of electroencephalographic seizures. Finally, administration of the Kv1.1 lentivirus to an established epileptic focus progressively suppressed epileptic activity over several weeks without detectable behavioral side effects. Thus, gene therapy in a rodent model can be used to suppress seizures acutely, prevent their occurrence after an epileptogenic stimulus, and successfully treat established focal epilepsy
    • ā€¦
    corecore