45,937 research outputs found

    Phase diagram of two-species Bose-Einstein condensates in an optical lattice

    Full text link
    The exact macroscopic wave functions of two-species Bose-Einstein condensates in an optical lattice beyond the tight-binding approximation are studied by solving the coupled nonlinear Schrodinger equations. The phase diagram for superfluid and insulator phases of the condensates is determined analytically according to the macroscopic wave functions of the condensates, which are seen to be traveling matter waves.Comment: 13 pages, 2 figure

    Non-Markovian disentanglement dynamics of two-qubit system

    Full text link
    We investigated the disentanglement dynamics of two-qubit system in Non-Markovian approach. We showed that only the couple strength with the environment near to or less than fine-structure constant 1/137, entanglement appear exponential decay for a certain class of two-qubit entangled state. While the coupling between qubit and the environment is much larger, system always appears the sudden-death of entanglement even in the vacuum environment.Comment: 17 pages, 3 figure

    Piecewise Euclidean structures and Eberlein's Rigidity Theorem in the singular case

    Full text link
    In this article, we generalize Eberlein's Rigidity Theorem to the singular case, namely, one of the spaces is only assumed to be a CAT(0) topological manifold. As a corollary, we get that any compact irreducible but locally reducible locally symmetric space of noncompact type does not admit a nonpositively curved (in the Aleksandrov sense) piecewise Euclidean structure. Any hyperbolic manifold, on the other hand, does admit such a structure.Comment: 28 pages. Published copy, also available at http://www.maths.warwick.ac.uk/gt/GTVol3/paper13.abs.htm

    An optimized analytical method for the simultaneous detection of iodoform, iodoacetic acid, and other trihalomethanes and haloacetic acids in drinking water

    Get PDF
    An optimized method is presented using liquid-liquid extraction and derivatization for the extraction of iodoacetic acid (IAA) and other haloacetic acids (HAA9) and direct extraction of iodoform (IF) and other trihalomethanes (THM4) from drinking water, followed by detection by gas chromatography with electron capture detection (GC-ECD). A Doehlert experimental design was performed to determine the optimum conditions for the five most significant factors in the derivatization step: namely, the volume and concentration of acidic methanol (optimized values  = 15%, 1 mL), the volume and concentration of Na2SO4 solution (129 g/L, 8.5 mL), and the volume of saturated NaHCO3 solution (1 mL). Also, derivatization time and temperature were optimized by a two-variable Doehlert design, resulting in the following optimized parameters: an extraction time of 11 minutes for IF and THM4 and 14 minutes for IAA and HAA9; mass of anhydrous Na2SO4 of 4 g for IF and THM4 and 16 g for IAA and HAA9; derivatization time of 160 min and temperature at 40°C. Under optimal conditions, the optimized procedure achieves excellent linearity (R2 ranges 0.9990–0.9998), low detection limits (0.0008–0.2 µg/L), low quantification limits (0.008–0.4 µg/L), and good recovery (86.6%–106.3%). Intra- and inter-day precision were less than 8.9% and 8.8%, respectively. The method was validated by applying it to the analysis of raw, flocculated, settled, and finished waters collected from a water treatment plant in China

    Can an observer really catch up with light

    Get PDF
    Given a null geodesic γ0(λ)\gamma_0(\lambda) with a point rr in (p,q)(p,q) conjugate to pp along γ0(λ)\gamma_0(\lambda), there will be a variation of γ0(λ)\gamma_0(\lambda) which will give a time-like curve from pp to qq. This is a well-known theory proved in the famous book\cite{2}. In the paper we prove that the time-like curves coming from the above-mentioned variation have a proper acceleration which approaches infinity as the time-like curve approaches the null geodesic. This means no observer can be infinitesimally near the light and begin at the same point with the light and finally catch the light. Only separated from the light path finitely, does the observer can begin at the same point with the light and finally catch the light.Comment: 6 pages, no figures, submited to Physical Review

    Symbolic Dynamics Analysis of the Lorenz Equations

    Full text link
    Recent progress of symbolic dynamics of one- and especially two-dimensional maps has enabled us to construct symbolic dynamics for systems of ordinary differential equations (ODEs). Numerical study under the guidance of symbolic dynamics is capable to yield global results on chaotic and periodic regimes in systems of dissipative ODEs which cannot be obtained neither by purely analytical means nor by numerical work alone. By constructing symbolic dynamics of 1D and 2D maps from the Poincare sections all unstable periodic orbits up to a given length at a fixed parameter set may be located and all stable periodic orbits up to a given length may be found in a wide parameter range. This knowledge, in turn, tells much about the nature of the chaotic limits. Applied to the Lorenz equations, this approach has led to a nomenclature, i.e., absolute periods and symbolic names, of stable and unstable periodic orbits for an autonomous system. Symmetry breakings and restorations as well as coexistence of different regimes are also analyzed by using symbolic dynamics.Comment: 35 pages, LaTeX, 13 Postscript figures, uses psfig.tex. The revision concerns a bug at the end of hlzfig12.ps which prevented the printing of the whole .ps file from page 2

    Neutrino emission from a GRB afterglow shock during an inner supernova shock breakout

    Full text link
    The observations of a nearby low-luminosity gamma-ray burst (GRB) 060218 associated with supernova SN 2006aj may imply an interesting astronomical picture where a supernova shock breakout locates behind a relativistic GRB jet. Based on this picture, we study neutrino emission for early afterglows of GRB 060218-like GRBs, where neutrinos are expected to be produced from photopion interactions in a GRB blast wave that propagates into a dense wind. Relativistic protons for the interactions are accelerated by an external shock, while target photons are basically provided by the incoming thermal emission from the shock breakout and its inverse-Compton scattered component. Because of a high estimated event rate of low-luminosity GRBs, we would have more opportunities to detect afterglow neutrinos from a single nearby GRB event of this type by IceCube. Such a possible detection could provide evidence for the picture described above.Comment: 6 pages, 2 figures, accepted for publication in MNRA
    • …
    corecore