24 research outputs found

    Baseline elevated Lp-PLA2 is associated with increased risk for re-stenosis after stent placement

    Get PDF
    BACKGROUND: Lipoprotein associated phospholipase A2 (Lp-PLA2) is a novel biomarker for cardiovascular risk prediction. Whether increased Lp-PLA2 level is associated with re-stenosis after stent-placement is unclear. METHODS: Totally 326 participants eligible for stent-placement were enrolled and divided into two groups according to baseline Lp-PLA2 levels (named normal and elevated groups). Baseline characteristics and clinical outcomes were compared between normal and elevated groups. The relationships between Lp-PLA2 and other risk factors with re-stenosis were evaluated. RESULTS: Only the between-group difference of Lp-PLA2 was significant (123.2 ± 33.6 ng/mL vs 336.8 ± 85.4 ng/mL, P < 0.001) while other demographic and clinical characteristics between these two groups were comparable. Approximately 55.1% and 58.5% of participants in normal and elevated groups presented with acute coronary syndrome, and the percentage of tri-vessels stenoses was significantly higher in elevated group (40.8% vs 32.1%, P = 0.016). Nearly 96.0% and 94.0% of participants in normal and elevated Lp-PLA2 groups were placed with drug-eluting stents, and the others were with bare-metal stents. After 1 year’s follow-up, the incidence of clinical end-points was comparable (13.3% vs 15.4%, P = 0.172). Nevertheless, the incidence of re-stenosis was marginally higher in elevated Lp-PLA2 group (8.5% versus 4.6%, P = 0.047). With multivariate analysis, after adjustment for other risk factors, Lp-PLA2 remained an independent predictor for re-stenosis with a hazard ratio of 1.140. No synergistic effect between Lp-PLA2 and other risk factors for re-stenosis was found. CONCLUSION: Increased Lp-PLA2 level is associated with an increased risk of re-stenosis. Lp-PLA2 assessment may be useful in predicting subjects who are at increased risk for re-stenosis

    Hydrogen Sulfide Protects against Chemical Hypoxia-Induced Injury by Inhibiting ROS-Activated ERK1/2 and p38MAPK Signaling Pathways in PC12 Cells

    Get PDF
    Hydrogen sulfide (H2S) has been proposed as a novel neuromodulator and neuroprotective agent. Cobalt chloride (CoCl2) is a well-known hypoxia mimetic agent. We have demonstrated that H2S protects against CoCl2-induced injuries in PC12 cells. However, whether the members of mitogen-activated protein kinases (MAPK), in particular, extracellular signal-regulated kinase1/2(ERK1/2) and p38MAPK are involved in the neuroprotection of H2S against chemical hypoxia-induced injuries of PC12 cells is not understood. We observed that CoCl2 induced expression of transcriptional factor hypoxia-inducible factor-1 alpha (HIF-1α), decreased cystathionine-β synthase (CBS, a synthase of H2S) expression, and increased generation of reactive oxygen species (ROS), leading to injuries of the cells, evidenced by decrease in cell viability, dissipation of mitochondrial membrane potential (MMP) , caspase-3 activation and apoptosis, which were attenuated by pretreatment with NaHS (a donor of H2S) or N-acetyl-L cystein (NAC), a ROS scavenger. CoCl2 rapidly activated ERK1/2, p38MAPK and C-Jun N-terminal kinase (JNK). Inhibition of ERK1/2 or p38MAPK or JNK with kinase inhibitors (U0126 or SB203580 or SP600125, respectively) or genetic silencing of ERK1/2 or p38MAPK by RNAi (Si-ERK1/2 or Si-p38MAPK) significantly prevented CoCl2-induced injuries. Pretreatment with NaHS or NAC inhibited not only CoCl2-induced ROS production, but also phosphorylation of ERK1/2 and p38MAPK. Thus, we demonstrated that a concurrent activation of ERK1/2, p38MAPK and JNK participates in CoCl2-induced injuries and that H2S protects PC12 cells against chemical hypoxia-induced injuries by inhibition of ROS-activated ERK1/2 and p38MAPK pathways. Our results suggest that inhibitors of ERK1/2, p38MAPK and JNK or antioxidants may be useful for preventing and treating hypoxia-induced neuronal injury

    The Opening of ATP-Sensitive K+ Channels Protects H9c2 Cardiac Cells Against the High Glucose-Induced Injury and Inflammation by Inhibiting the ROS-TLR4-Necroptosis Pathway

    No full text
    Background/Aims: Hyperglycemia activates multiple signaling molecules, including reactive oxygen species (ROS), toll-like receptor 4 (TLR4), receptor-interacting protein 3 (RIP3, a kinase promoting necroptosis), which mediate hyperglycemia-induced cardiac injury. This study explored whether inhibition of ROS-TLR4-necroptosis pathway contributed to the protection of ATP-sensitive K+ (KATP) channel opening against high glucose-induced cardiac injury and inflammation. Methods: H9c2 cardiac cells were treated with 35 mM glucose (HG) to establish a model of HG-induced insults. The expression of RIP3 and TLR4 were tested by western blot. Generation of ROS, cell viability, mitochondrial membrane potential (MMP) and secretion of inflammatory cytokines were measured as injury indexes. Results: HG increased the expression of TLR4 and RIP3. Necrostatin-1 (Nec-1, an inhibitor of necroptosis) or TAK-242 (an inhibitor of TLR4) co-treatment attenuated HG-induced up-regulation of RIP3. Diazoxide (DZ, a mitochondrial KATP channel opener) or pinacidil (Pin, a non-selective KATP channel opener) or N-acetyl-L-cysteine (NAC, a ROS scavenger) pre-treatment blocked the up-regulation of TLR4 and RIP3. Furthermore, pre-treatment with DZ or Pin or NAC, or co-treatment with TAK-242 or Nec-1 attenuated HG-induced a decrease in cell viability, and increases in ROS generation, MMP loss and inflammatory cytokines secretion. However, 5-hydroxy decanoic acid (5-HD, a mitochondrial KATP channel blocker) or glibenclamide (Gli, a non-selective KATP channel blocker) pre-treatment did not aggravate HG-induced injury and inflammation. Conclusion: KATP channel opening protects H9c2 cells against HG-induced injury and inflammation by inhibiting ROS-TLR4-necroptosis pathway

    Exogenous Hydrogen Sulfide Protects against Doxorubicin-Induced Inflammation and Cytotoxicity by Inhibiting p38MAPK/NF&#954;B Pathway in H9c2 Cardiac Cells

    No full text
    Background/Aim:We have demonstrated that exogenous hydrogen sulfide (H2S) protects H9c2 cardiac cells against the doxorubicin (DOX)-induced injuries by inhibiting p38 mitogen-activated protein kinase (MAPK) pathway and that the p38 MAPK/nuclear factor-&#954;B (NF-&#954;B) pathway is involved in the DOX-induced inflammatory response and cytotoxicity. The present study attempts to test the hypothesis that exogenous H2S might protect cardiomyocytes against the DOX-induced inflammation and cytotoxicity through inhibiting p38 MAPK/NF-&#954;B pathway. Methods: H9c2 cardiac cells were exposed to 5µM DOX for 24 h to establish a model of DOX cardiotoxicity. The cells were pretreated with NaHS( a donor of H2S) or other drugs before exposure to DOX. Cell viability was analyzed by cell counter kit 8 ( CCK-8), The expression of NF-&#954;B p65 and inducible nitric oxide synthase (iNOS) was detected by Western blot assay. The levels of interleukin-1ß (IL-1ß), IL-6 and tumor necrosis factor-a (TNF-a) were tested by enzyme-linked immunosorbent assay (ELISA). Results: Our findings demonstrated that pretreatment of H9c2 cardiac cells with NaHS for 30 min before exposure to DOX markedly ameliorated the DOX-induced phosphorylation and nuclear translocation of NF-&#954;B p65 subunit. Importantly, the pretreatment with NaHS significantly attenuated the p38 MAPK/NF-&#954;B pathway-mediated inflammatory responses induced by DOX, as evidenced by decreases in the levels of IL-1ß, IL-6 and TNF-a. In addition, application of NaHS or IL-1ß receptor antagonist (IL-1Ra) or PDTC (an inhibitor of NF-&#954;B) attenuated the DOX-induced expression of iNOS and production of nitric oxide (NO), respectively. Furthermore, IL-1Ra also dramatically reduced the DOX-induced cytotoxicity and phosphorylation of NF-&#954;B p65. The pretreatment of H9c2 cells with N-acetyl-L-cysteine (NAC), a scavenger of reactive oxygen species (ROS) prior to exposure to DOX depressed the phosphorylation of NF-&#954;B p65 induced by DOX. Conclusion: The present study has demonstrated the new mechanistic evidence that exogenous H2S attenuates the DOX-induced inflammation and cytotoxicity by inhibiting p38 MAPK/NF-&#954;B pathway in H9c2 cardiac cells. We also provide novel data that the interaction between NF-&#954;B pathway and IL-1ß is important in the induction of DOX-induced inflammation and cytotoxicity in H9c2 cardiac cells

    SDF-1α upregulation by atorvastatin in rats with acute myocardial infarction via nitric oxide production confers anti-inflammatory and anti-apoptotic effects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effects of atorvastatin on SDF-1α expression under acute myocardial infarction (AMI) are still unclear. Therefore, our present study is to investigate the roles and mechanisms of atorvastatin treatment on SDF-1α expression in rats with AMI.</p> <p>Methods</p> <p>Male Sprague–Dawley rats were underwent permanent coronary artery ligation and randomly assigned into four groups as follow: blank control (B), atorvastatin (A), atorvastatin plus L-NAME (A+L-NAME), and atorvastatin plus AMD3100 (A+AMD3100). Rats underwent similar procedure but without ligation were used as group sham operated (S). Atorvastatin (10mg/Kg/d body weight) was administrated by gavage to rats in three atorvastatin treated groups, and L-NAME (40mg/Kg/d body weight) or AMD3100 (5mg/Kg/d body weight) was given to group A+L-NAME or A+AMD3100, respectively.</p> <p>Results</p> <p>Comparing with group B, NO production, SDF-1α and CXCR4 expression were significantly up-regulated in three atorvastatin treated groups at the seventh day. However, the increments of SDF-1α and CXCR4 expression in group A+L-NAME were reduced when NO production was inhibited by L-NAME. Anti-inflammatory and anti-apoptotic effects of atorvastatin were offset either by decrease of SDF-1α and CXCR4 expression (by L-NAME) or blockage of SDF-1α coupling with CXCR4 (by AMD3100). Expression of STAT3, a cardioprotective factor mediating SDF-1α/CXCR4 axis induced cardiac protection, was up-regulated most significantly in group A. The effects of atorvastatin therapy on cardiac function were also abrogated either when SDF-1α and CXCR4 expression was diminished or the coupling of SDF-1α with CXCR4 was blocked.</p> <p>Conclusion</p> <p>SDF-1α upregulation by atorvastatin in rats with AMI was, at least partially, via the eNOS/NO dependent pathway, and SDF-1α upregulation and SDF-1α coupling with CXCR4 conferred anti-inflammatory and anti-apoptotic effects under AMI setting which we speculated that ultimately contributed to cardiac function improvement.</p

    Atorvastatin treatment of rats with ischemia-reperfusion injury improves adipose-derived mesenchymal stem cell migration and survival via the SDF-1α/CXCR-4 axis.

    Get PDF
    BACKGROUND: Adipose-derived mesenchymal stem cells (ASCs) transplantation is a promising approach for myocardium repair. Promotion of ASCs migration and survival is the key for improving ASCs efficiency. SDF-1α is a critical factor responsible for ASCs migration and survival. Atorvastatin (Ator) is capable of up-regulating SDF-1α. Therefore, we're going to investigate whether ASCs migration and survival could be improved with atorvastatin. METHODS: In vitro study, cardiomyocytes were subjected to anoxia-reoxygenation injury and subsequently divided into different groups: group blank control, Ator, Ator plus L-NAME (A+L-NAME) and Ator plus AMD3100 (A+AMD3100).When migration analysis completed, cardiomyocytes were used for subsequent analyses. In vivo study, rats underwent ischemia-reperfusion injury were assigned into different groups corresponding to in vitro protocols. ASCs were transplanted on the seventh day of atorvastatin therapy. Seven days later, the rates of migration, differentiation and apoptosis were evaluated. RESULTS: Compared with other groups, ASCs migration in vitro was significantly improved in group Ator, which was dependent on SDF-1α/CXCR-4 coupling. Results of in vivo study were consistent with that of in vitro study, further supporting the notion that the efficacy of atorvastatin on ASCs migration improvement was related to SDF-1α/CXCR-4 axis. Higher vessel density in group Ator might be another mechanism responsible for migration improvement. Concomitantly, apoptosis was significantly reduced in group Ator, whereas no significant difference of differentiation was found. CONCLUSION: Migration and survival of ASCs could be improved by atorvastatin under ischemia-reperfusion injury, which were ascribed to SDF-1α/CXCR-4 axis

    Study schematic and immuno-phenotype of ASCs.

    No full text
    <p>Panel (a) Schematic of the <i>in vivo</i> and <i>in vitro</i> experiment. Panel (b) CD29, CD31, CD44 and CD45 were detected by flow cytometry. Results showed that the fourth passage ASCs were largely positive for CD29 (99.80±0.10%) and CD44 (99.60±0.20%), and only minority of ASCs were positive for CD31 (0.30±0.10%) and CD45 (0.45±0.10%). The expression of CXCR4 on ASCs was 9.96±0.07%.</p
    corecore