152 research outputs found

    The impact of different sentiment in investment decisions: evidence from China’s stock markets IPOs

    Get PDF
    In this study, we used data on China’s initial public offerings (IPOs), market volatility and macro environment before and after two stock crashes during 2006–2016 to investigate how different investor sentiment affects IPO first-day flipping. The empirical results show that the expected returns of allocated investors are affected by sentiment, with allocated investors having higher psychological expectations of future returns during an optimistic bull market and their optimism discouraging first-day flipping, while higher risk-free interest rate levels and rising broad market indices also discourage first-day flipping and tend to sell in the future. The pessimistic bear market during which allocated investors have lower psychological expectations of future returns, their pessimism will promote first-day flipping, and the increase in the risk-free rate level will also promote first-day flipping, which is the opposite of the optimistic bull market, indicating that their risk aversion has increased and they tend to sell on the same day. We also found an anomaly that the greater the decline in the broad market index during a pessimistic bear market, the more inclined the allocated investors are to sell in the future when the broad market index rises in an attempt to gain higher returns. These findings help explain and understand the impact of market and macro index fluctuations on investor behavior under different investor sentiments

    EasyNet: An Easy Network for 3D Industrial Anomaly Detection

    Full text link
    3D anomaly detection is an emerging and vital computer vision task in industrial manufacturing (IM). Recently many advanced algorithms have been published, but most of them cannot meet the needs of IM. There are several disadvantages: i) difficult to deploy on production lines since their algorithms heavily rely on large pre-trained models; ii) hugely increase storage overhead due to overuse of memory banks; iii) the inference speed cannot be achieved in real-time. To overcome these issues, we propose an easy and deployment-friendly network (called EasyNet) without using pre-trained models and memory banks: firstly, we design a multi-scale multi-modality feature encoder-decoder to accurately reconstruct the segmentation maps of anomalous regions and encourage the interaction between RGB images and depth images; secondly, we adopt a multi-modality anomaly segmentation network to achieve a precise anomaly map; thirdly, we propose an attention-based information entropy fusion module for feature fusion during inference, making it suitable for real-time deployment. Extensive experiments show that EasyNet achieves an anomaly detection AUROC of 92.6% without using pre-trained models and memory banks. In addition, EasyNet is faster than existing methods, with a high frame rate of 94.55 FPS on a Tesla V100 GPU

    Literal-Aware Knowledge Graph Embedding for Welding Quality Monitoring: A Bosch Case

    Full text link
    Recently there has been a series of studies in knowledge graph embedding (KGE), which attempts to learn the embeddings of the entities and relations as numerical vectors and mathematical mappings via machine learning (ML). However, there has been limited research that applies KGE for industrial problems in manufacturing. This paper investigates whether and to what extent KGE can be used for an important problem: quality monitoring for welding in manufacturing industry, which is an impactful process accounting for production of millions of cars annually. The work is in line with Bosch research of data-driven solutions that intends to replace the traditional way of destroying cars, which is extremely costly and produces waste. The paper tackles two very challenging questions simultaneously: how large the welding spot diameter is; and to which car body the welded spot belongs to. The problem setting is difficult for traditional ML because there exist a high number of car bodies that should be assigned as class labels. We formulate the problem as link prediction, and experimented popular KGE methods on real industry data, with consideration of literals. Our results reveal both limitations and promising aspects of adapted KGE methods.Comment: Paper accepted at ISWC2023 In-Use trac
    corecore