262 research outputs found

    Efficient Private ERM for Smooth Objectives

    Full text link
    In this paper, we consider efficient differentially private empirical risk minimization from the viewpoint of optimization algorithms. For strongly convex and smooth objectives, we prove that gradient descent with output perturbation not only achieves nearly optimal utility, but also significantly improves the running time of previous state-of-the-art private optimization algorithms, for both ϵ\epsilon-DP and (ϵ,δ)(\epsilon, \delta)-DP. For non-convex but smooth objectives, we propose an RRPSGD (Random Round Private Stochastic Gradient Descent) algorithm, which provably converges to a stationary point with privacy guarantee. Besides the expected utility bounds, we also provide guarantees in high probability form. Experiments demonstrate that our algorithm consistently outperforms existing method in both utility and running time

    Exploring diastereoselectivity mechanism of L-threonine aldolase

    Get PDF
    Please click Additional Files below to see the full abstract

    Dissipative elastic metamaterial with a lowfrequency passband

    Get PDF
    We design and experimentally demonstrate a dissipative elastic metamaterial structure that functions as a bandpass filter with a low-frequency passband. The mechanism of dissipation in this structure is well described by a mass-spring-damper model that reveals that the imaginary part of the wavenumber is non-zero, even in the passband of dissipative metamaterials. This indicates that transmittance in this range can be low. A prototype for this viscoelastic metamaterial model is fabricated by 3D printing techniques using soft and hard acrylics as constituent materials. The transmittance of the printed metamaterial is measured and shows good agreement with theoretical predictions, demonstrating its potential in the design of compact waveguides, filters and other advanced devices for controlling mechanical waves

    TcruziDB: an integrated, post-genomics community resource for Trypanosoma cruzi

    Get PDF
    TcruziDB () is an integrated post-genomics database for the parasitic organism, Trypanosoma cruzi, the causative agent of Chagas' disease. TcruziDB was established in 2003 as a flat-file database with tools for mining the unannotated sequence reads and preliminary contig assemblies emerging from the Tri-Tryp genome consortium (TIGR/SBRI/Karolinska). Today, TcruziDB houses the recently published assembled genomic contigs and annotation provided by the genome consortium in a relational database supported by the Genomics Unified Schema (GUS) architecture. The combination of an annotated genome and a relational architecture has facilitated the integration of genomic data with expression data (proteomic and EST) and permitted the construction of automated analysis pipelines. TcruziDB has accepted, and will continue to accept the deposition of genomic and functional genomic datasets contributed by the research community

    Dissipative elastic metamaterial with a lowfrequency passband

    Get PDF
    We design and experimentally demonstrate a dissipative elastic metamaterial structure that functions as a bandpass filter with a low-frequency passband. The mechanism of dissipation in this structure is well described by a mass-spring-damper model that reveals that the imaginary part of the wavenumber is non-zero, even in the passband of dissipative metamaterials. This indicates that transmittance in this range can be low. A prototype for this viscoelastic metamaterial model is fabricated by 3D printing techniques using soft and hard acrylics as constituent materials. The transmittance of the printed metamaterial is measured and shows good agreement with theoretical predictions, demonstrating its potential in the design of compact waveguides, filters and other advanced devices for controlling mechanical waves

    A Dimensional Structure based Knowledge Distillation Method for Cross-Modal Learning

    Full text link
    Due to limitations in data quality, some essential visual tasks are difficult to perform independently. Introducing previously unavailable information to transfer informative dark knowledge has been a common way to solve such hard tasks. However, research on why transferred knowledge works has not been extensively explored. To address this issue, in this paper, we discover the correlation between feature discriminability and dimensional structure (DS) by analyzing and observing features extracted from simple and hard tasks. On this basis, we express DS using deep channel-wise correlation and intermediate spatial distribution, and propose a novel cross-modal knowledge distillation (CMKD) method for better supervised cross-modal learning (CML) performance. The proposed method enforces output features to be channel-wise independent and intermediate ones to be uniformly distributed, thereby learning semantically irrelevant features from the hard task to boost its accuracy. This is especially useful in specific applications where the performance gap between dual modalities is relatively large. Furthermore, we collect a real-world CML dataset to promote community development. The dataset contains more than 10,000 paired optical and radar images and is continuously being updated. Experimental results on real-world and benchmark datasets validate the effectiveness of the proposed method
    • …
    corecore