29 research outputs found

    LBH589 Inhibits proliferation and metastasis of hepatocellular carcinoma via inhibition of gankyrin/stat3/akt pathway

    Get PDF
    Background: Gankyrin has shown to be overexpressed in human liver cancers and plays a complex role in hepatocarcinogenesis. Panobinostat (LBH589), a new hydroxamic acid-derived histone deacetylase inhibitor has shown promising anticancer effects recently. Here, we investigated the potential of LBH589 as a form of treatment for hepatocellular carcinoma (HCC). Methods: Gankyrin plasmid was transfected into HCC cells, and the cells were selected for more than 4 weeks by incubation with G418 for overexpression clones. The therapeutic effects of LBH589 were evaluated in vitro and in vivo. Cell proliferation, apoptosis, cell cycle, invasive potential, and epithelial-mesenchy-mal transition (EMT) were examined. Results: LBH589 significantly inhibited HCC growth and metastasis in vitro and in vivo. Western blotting analysis indicated that LBH589 could decrease the expression of gankyrin and subsequently reduced serine-phosphorylated Akt and tyrosine-phosphorylated STAT3 expression although the total Akt and STAT3 were unaffected. LBH589 inhibited metastasis in vitro via down-regulation of N-cadherin, vimentin, TWIST1, VEGF and up-regulation of E-cadherin. LBH589 also induced apoptosis and G1 phase arrest in HCC cell lines. Ectopic expression of gankyrin attenuated the effects of LBH589, which indicates that gankyrin might play an important role in LBH589 mediated anticancer effects. Lastly, in vivo study indicated that LBH589 inhibited tumor growth and metastasis, without discernable adverse effects comparing to control group, with abrogating gankyrin/STAT3/Akt pathway. Conclusions: Our results suggested that LBH589 could inhibit HCC growth and metastasis through down-regulating gankyrin/STAT3/Akt pathway. LBH589 may present itself as a novel therapeutic strategy for HCC

    Nutlin-3 overcomes arsenic trioxide resistance and tumor metastasis mediated by mutant p53 in Hepatocellular Carcinoma

    Get PDF
    Background: Arsenic trioxide has been demonstrated as an effective anti-cancer drug against leukemia and solid tumors both in vitro and in vivo. However, recent phase II trials demonstrated that single agent arsenic trioxide was poorly effective against hepatocellular carcinoma (HCC), which might be due to drug resistance. Methods: Mutation detection of p53 gene in arsenic trioxide resistant HCC cell lines was performed. The therapeutic effects of arsenic trioxide and Nutlin-3 on HCC were evaluated both in vitro and in vivo. A series of experiments including MTT, apoptosis assays, co-Immunoprecipitation, siRNA transfection, lentiviral infection, cell migration, invasion, and epithelial-mesenchy-mal transition (EMT) assays were performed to investigate the underlying mechanisms. Results: The acquisition of p53 mutation contributed to arsenic trioxide resistance and enhanced metastatic potential of HCC cells. Mutant p53 (Mutp53) silence could re-sensitize HCC resistant cells to arsenic trioxide and inhibit the metastatic activities, while mutp53 overexpression showed the opposite effects. Neither arsenic trioxide nor Nutlin-3 could exhibit obvious effects against arsenic trioxide resistant HCC cells, while combination of them showed significant effects. Nutlin-3 can not only increase the intracellular arsenicals through inhibition of p-gp but also promote the p73 activation and mutp53 degradation mediated by arsenic trioxide. In vivo experiments indicated that Nutlin-3 can potentiate the antitumor activities of arsenic trioxide in an orthotopic hepatic tumor model and inhibit the metastasis to lung. Conclusions: Acquisitions of p53 mutations contributed to the resistance of HCC to arsenic trioxide. Nutlin-3 could overcome arsenic trioxide resistance and inhibit tumor metastasis through p73 activation and promoting mutant p53 degradation mediated by arsenic trioxide

    Diphenyl Difluoroketone: A Potent Chemotherapy Candidate for Human Hepatocellular Carcinoma

    Get PDF
    Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, was recently reported to inhibit proliferation of various cancer cells significantly. Here we try to determine the effect and mechanism of EF24 on hepatocellular carcinoma. 2 µM EF24 was found to inhibit the proliferation of PLC/PRF/5, Hep3B, HepG2, SK-HEP-1 and Huh 7 cell lines. However, even 8 µM EF24 treatment did not affect the proliferation of normal liver LO2 cells. Accordingly, 20 mg/kg/d EF24 inhibited the growth of the tumor xenografts conspicuously while causing no apparent change in liver, spleen or body weight. In addition, significant apoptosis and G2/M phase cell cycle arrest were found using flow cytometry. Besides, caspases and PARP activation and features typical of apoptosis including fragmented nuclei with condensed chromatin were also observed. Furthermore, the mechanism was targeted at the reduction of nuclear factor kappa b (NF-κB) pathway and the NF-κB–regulated gene products Bcl-2, COX-2, Cyclin B1. Our study has offered a strategy that EF24 being a therapeutic agent for hepatocellular carcinoma

    Regulation of Fertility by the p53 Family Members

    No full text
    The p53 family members, which consist of 3 transcription factors—p53, p63, and p73—are conserved during evolution. The p53 family proteins are involved in many important cellular functions, including tumor suppression (p53 and p73), the development of epithelial cell layers (p63), and the development of central nervous system and immune system (p73). Studies on p53-like proteins in low organisms have demonstrated that their primordial functions are to maintain the genomic integrity of germ cells and ensure faithful development and reproduction. In vertebrates, the p53 family proteins retain these functions in reproduction and at the same time have developed additional important functions in reproduction, such as the regulation of embryonic implantation (p53). p53 regulates embryonic implantation through transcriptional regulation of leukemia inhibitory factor (LIF). p63, in particular TAp63, is a main regulator to protect the fidelity of female germ cells during meiotic arrest. p73, in particular TAp73, regulates the ovary function and the quality of oocytes. Loss of p53, p63, or p73 genes in female mice leads to a significant decrease in fertility. These functions of the p53 family proteins in reproduction provide a plausible explanation for positive evolutionary selection observed in a group of single nucleotide polymorphisms and haplotypes in the p53 family genes. A better understanding of the functions of the p53 family proteins in reproduction may lead to new strategies for fertility treatment

    G-quadruplexes promote the motility in MAZ phase-separated condensates to activate CCND1 expression and contribute to hepatocarcinogenesis

    No full text
    Abstract G-quadruplexes (G4s) can recruit transcription factors to activate gene expression, but detailed mechanisms remain enigmatic. Here, we demonstrate that G4s in the CCND1 promoter propel the motility in MAZ phase-separated condensates and subsequently activate CCND1 transcription. Zinc finger (ZF) 2 of MAZ is a responsible for G4 binding, while ZF3-5, but not a highly disordered region, is critical for MAZ condensation. MAZ nuclear puncta overlaps with signals of G4s and various coactivators including BRD4, MED1, CDK9 and active RNA polymerase II, as well as gene activation histone markers. MAZ mutants lacking either G4 binding or phase separation ability did not form nuclear puncta, and showed deficiencies in promoting hepatocellular carcinoma cell proliferation and xenograft tumor formation. Overall, we unveiled that G4s recruit MAZ to the CCND1 promoter and facilitate the motility in MAZ condensates that compartmentalize coactivators to activate CCND1 expression and subsequently exacerbate hepatocarcinogenesis

    Blocking IL-17A enhances tumor response to anti-PD-1 immunotherapy in microsatellite stable colorectal cancer

    No full text
    Background Immune checkpoint inhibitors (ICIs), including anti-PD-1 therapy, have limited efficacy in patients with microsatellite stable (MSS) colorectal cancer (CRC). Interleukin 17A (IL-17A) activity leads to a protumor microenvironment, dependent on its ability to induce the production of inflammatory mediators, mobilize myeloid cells and reshape the tumor environment. In the present study, we aimed to investigate the role of IL-17A in resistance to antitumor immunity and to explore the feasibility of anti-IL-17A combined with anti-PD-1 therapy in MSS CRC murine models.Methods The expression of programmed cell death-ligand 1 (PD-L1) and its regulation by miR-15b-5p were investigated in MSS CRC cell lines and tissues. The effects of miR-15b-5p on tumorigenesis and anti-PD-1 treatment sensitivity were verified both in vitro and in colitis-associated cancer (CAC) and APCmin/+ murine models. In vivo efficacy and mechanistic studies were conducted using antibodies targeting IL-17A and PD-1 in mice bearing subcutaneous CT26 and MC38 tumors.Results Evaluation of clinical pathological specimens confirmed that PD-L1 mRNA levels are associated with CD8+ T cell infiltration and better prognosis. miR-15b-5p was found to downregulate the expression of PD-L1 at the protein level, inhibit tumorigenesis and enhance anti-PD-1 sensitivity in CAC and APCmin/+ CRC models. IL-17A led to high PD-L1 expression in CRC cells through regulating the P65/NRF1/miR-15b-5p axis. Combined IL-17A and PD-1 blockade had efficacy in CT26 and MC38 tumors, with more cytotoxic T lymphocytes cells and fewer myeloid-derived suppressor cells in tumors.Conclusions IL-17A increases PD-L1 expression through the p65/NRF1/miR-15b-5p axis and promotes resistance to anti-PD-1 therapy. Blocking IL-17A improved the efficacy of anti-PD-1 therapy in MSS CRC murine models. IL-17A might serve as a therapeutic target to sensitize patients with MSS CRC to ICI therapy

    Long non-coding RNA NEAT1-modulated abnormal lipolysis via ATGL drives hepatocellular carcinoma proliferation

    No full text
    Abstract Background Abnormal metabolism, including abnormal lipid metabolism, is a hallmark of cancer cells. Some studies have demonstrated that the lipogenic pathway might promote the development of hepatocellular carcinoma (HCC). However, the role of the lipolytic pathway in HCC has not been elucidated. Methods We compared levels of adipose triglyceride lipase (ATGL) in human HCC and healthy liver tissues by real time PCR, western blot and immunohistochemistry. We measured diacylglycerol(DAG) and free fatty acid (FFA) levels in HCC cells driven by the NEAT1-ATGL axis and in HCC tissues. We also assessed the effects of ATGL, DAG, FFA, and NEAT1 on HCC cells proliferation in vitro and in an orthotopic xenograft HCC mouse model. We also performed a luciferase reporter assay to investigate the interaction between NEAT1/ATGL and miR-124-3p. Results We found that the lipolytic enzyme, ATGL is highly expressed in human HCC tissues and predicts poor prognosis. We also found that high levels of DAG and FFA are present in HCC tissues. Furthermore, the lncRNA-NEAT1 was found to modulate ATGL expression and disrupt lipolysis in HCC cells via ATGL. Notably, ATGL and its products, DAG and FFA, were shown to be responsible for NEAT1-mediated HCC cell growth. NEAT1 regulated ATGL expression by binding miR-124-3p. Additionally, NEAT1 knockdown attenuated HCC cell growth through miR-124-3p/ATGL/DAG+FFA/PPARα signaling. Conclusion Our results reveal that NEAT1-modulates abnormal lipolysis via ATGL to drive HCC proliferation
    corecore