77 research outputs found

    Variable pitch approach for performance improving of straight-bladed VAWT at rated tip speed ratio

    Get PDF
    This paper presents a new variable pitch (VP) approach to increase the peak power coefficient of the straight-bladed vertical-axis wind turbine (VAWT), by widening the azimuthal angle band of the blade with the highest aerodynamic torque, instead of increasing the highest torque. The new VP-approach provides a curve of pitch angle designed for the blade operating at the rated tip speed ratio (TSR) corresponding to the peak power coefficient of the fixed pitch (FP)-VAWT. The effects of the new approach are exploited by using the double multiple stream tubes (DMST) model and Prandtl’s mathematics to evaluate the blade tip loss. The research describes the effects from six aspects, including the lift, drag, angle of attack (AoA), resultant velocity, torque, and power output, through a comparison between VP-VAWTs and FP-VAWTs working at four TSRs: 4, 4.5, 5, and 5.5. Compared with the FP-blade, the VP-blade has a wider azimuthal zone with the maximum AoA, lift, drag, and torque in the upwind half-cycle, and yields the two new larger maximum values in the downwind half-cycle. The power distribution in the swept area of the turbine changes from an arched shape of the FP-VAWT into the rectangular shape of the VP-VAWT. The new VP-approach markedly widens the highest-performance zone of the blade in a revolution, and ultimately achieves an 18.9% growth of the peak power coefficient of the VAWT at the optimum TSR. Besides achieving this growth, the new pitching method will enhance the performance at TSRs that are higher than current optimal values, and an increase of torque is also generated

    Experimental study on thermochemical composite flooding mechanism of extra heavy oil reservoirs with erosion channels

    Get PDF
    During the steam flooding of extra heavy oil, expansion of steam chamber is difficult and erosion channels appear, which is different from conventional heavy oil. The thermochemical composite system composed of steam, foam and viscosity reducer can effectively improve the development effect of extra heavy oil reservoirs. However, during the thermochemical composite flooding, the rheological characteristics of extra heavy oil and the influence of erosion channels on oil displacement mechanism are not yet researched. Taking the extra heavy oil reservoir in Block X of the Chunfeng Oilfield as an example, experimental research on the rheological properties and thermochemical composite flooding of extra heavy oil model with erosion channel is conducted. Firstly, the influence of thermochemical composite system on the rheological properties of extra heavy oil is evaluated. Then, a one-dimensional (1D) sand-pack model with erosion channel is used to conduct thermochemical composite flooding experiments, comparing the recovery of steam flooding, foam assisted steam flooding, viscosity reducer assisted steam flooding, and composite flooding (foam and viscosity reducer assisted steam flooding). Finally, a two-dimensional (2D) sand-pack model with erosion channel is used to conduct thermochemical composite flooding experiments, comparing the recovery of viscosity reducer assisted flooding and composite flooding. The results show that viscosity reducer reduces the viscosity of extra heavy oil greatly, and the extra heavy oil is not sensitive to the change of temperature after viscosity reduction. When the concentration of viscosity reducer is 0.4% or more, good viscosity reduction effect can be achieved at different oil-water ratio. In the 1D sand-pack model experiments, compared to steam flooding, foam assisted steam flooding, viscosity reducer assisted steam flooding, and composite flooding, the recovery increased by 4.38%, 17.38%, and 30.46%, respectively. In the 2D sand-pack model experiments, compared to steam flooding, the viscosity reducer assisted steam flooding and composite flooding increase the oil recovery by 12.49% and 16.61%, respectively. The thermochemical composite flooding of extra heavy oil is dominated by erosion, supplemented by displacement. There is a synergistic effect between chemicals in the process of composite flooding. At the same time, the purpose of “enhanced erosion and expanded sweep” is achieved

    A comprehensive overview of exosome lncRNAs: emerging biomarkers and potential therapeutics in endometriosis

    Get PDF
    Endometriosis is a gynecological condition that significantly impacting women’s daily lives. In recent years, the incidence of endometriosis has been rising yearly and is now an essential contributor to female infertility. Exosomes are extracellular vesicles (EVs) that carry long noncoding RNA (lncRNA) and shield lncRNA from the outside environment thanks to their vesicle-like structure. The role of exosome-derived lncRNAs in endometriosis is also receiving more study as high-throughput sequencing technology develops. Several lncRNAs with variable expression may be crucial to the emergence and growth of endometriosis. The early diagnosis of endometriosis will be considerably improved by further high specificity and sensitivity Exosome lncRNA screening. Exosomes assist lncRNAs in carrying out their roles, offering a new target for creating endometriosis-specific medications. In order to serve as a reference for clinical research on the pathogenesis, diagnosis, and treatment options of endometriosis, this paper covers the role of exosome lncRNAs in endometriosis and related molecular mechanisms

    Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor

    Get PDF
    Commercial wearable piezoelectric sensors possess excellent anti-interference stability due to their electronic packaging. However, this packaging renders them barely breathable and compromises human comfort. To address this issue, we develop a PVDF piezoelectric nanoyarns with an ultrahigh strength of 313.3 MPa, weaving them with different yarns to form three-dimensional piezoelectric fabric (3DPF) sensor using the advanced 3D textile technology. The tensile strength (46.0 MPa) of 3DPF exhibits the highest among the reported flexible piezoelectric sensors. The 3DPF features anti-gravity unidirectional liquid transport that allows sweat to move from the inner layer near to the skin to the outer layer in 4 s, resulting in a comfortable and dry environment for the user. It should be noted that sweating does not weaken the piezoelectric properties of 3DPF, but rather enhances. Additionally, the durability and comfortability of 3DPF are similar to those of the commercial cotton T-shirts. This work provides a strategy for developing comfortable flexible wearable electronic devices

    Efficacy of metformin targets on cardiometabolic health in the general population and non-diabetic individuals: a Mendelian randomization study

    Get PDF
    BACKGROUND: Metformin shows beneficial effects on cardiometabolic health in diabetic individuals. However, the beneficial effects in the general population, especially in non-diabetic individuals are unclear. We aim to estimate the effects of perturbation of seven metformin targets on cardiometabolic health using Mendelian randomization (MR). METHODS: Genetic variants close to metformin-targeted genes associated with expression of the corresponding genes and glycated haemoglobin (HbA1c) level were used to proxy therapeutic effects of seven metformin-related drug targets. Eight cardiometabolic phenotypes under metformin trials were selected as outcomes (average N = 466,947). MR estimates representing the weighted average effects of the seven effects of metformin targets on the eight outcomes were generated. One-sample MR was applied to estimate the averaged and target-specific effects in 338,425 non-diabetic individuals in UK Biobank. FINDINGS: Genetically proxied averaged effects of five metformin targets, equivalent to a 0.62% reduction of HbA1c level, was associated with 37.8% lower risk of coronary artery disease (CAD) (odds ratio [OR] = 0.62, 95% confidence interval [CI] = 0.46-0.84), lower levels of body mass index (BMI) (β = -0.22, 95% CI = -0.35 to -0.09), systolic blood pressure (SBP) (β = -0.19, 95% CI = -0.28 to -0.09) and diastolic blood pressure (DBP) levels (β = -0.29, 95% CI = -0.39 to -0.19). One-sample MR suggested that the seven metformin targets showed averaged and target-specific beneficial effects on BMI, SBP and DBP in non-diabetic individuals. INTERPRETATION: This study showed that perturbation of seven metformin targets has beneficial effects on BMI and blood pressure in non-diabetic individuals. Clinical trials are needed to investigate whether similar effects can be achieved with metformin medications. FUNDING: Funding information is provided in the Acknowledgements

    Mechanical Strain Regulates Osteoblast Proliferation through Integrin-Mediated ERK Activation

    Get PDF
    Mechanical strain plays a critical role in the proliferation, differentiation and maturation of bone cells. As mechanical receptor cells, osteoblasts perceive and respond to stress force, such as those associated with compression, strain and shear stress. However, the underlying molecular mechanisms of this process remain unclear. Using a four-point bending device, mouse MC3T3-E1 cells was exposed to mechanical tensile strain. Cell proliferation was determined to be most efficient when stimulated once a day by mechanical strain at a frequency of 0.5 Hz and intensities of 2500 µε with once a day, and a periodicity of 1 h/day for 3 days. The applied mechanical strain resulted in the altered expression of 1992 genes, 41 of which are involved in the mitogen-activated protein kinase (MAPK) signaling pathway. Activation of ERK by mechanical strain promoted cell proliferation and inactivation of ERK by PD98059 suppressed proliferation, confirming that ERK plays an important role in the response to mechanical strain. Furthermore, the membrane-associated receptors integrin β1 and integrin β5 were determined to regulate ERK activity and the proliferation of mechanical strain-treated MC3T3-E1 cells in opposite ways. The knockdown of integrin β1 led to the inhibition of ERK activity and cell proliferation, whereas the knockdown of integrin β5 led to the enhancement of both processes. This study proposes a novel mechanism by which mechanical strain regulates bone growth and remodeling

    Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR) to Treat the Antibiotic Cefradine.

    No full text
    Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L) were considered. Compared with the algal characteristics in the first treatment batch at 10 and 30 mg/L, higher algal growth inhibition rates were observed in the second treatment batch (11.23% to 20.81%). In contrast, algae produced more photosynthetic pigments in response to cefradine in the second treatment batch. A better removal efficiency (76.02%) was obtained during 96 h when the alga treated the antibiotic at 60 mg/L in the first treatment batch and at 30 mg/L in the second treatment batch. Additionally, the removal rate per unit algal density was also improved when the alga treated the antibiotic at 30 or 60 mg/L in the first treatment batch, respectively and at 30 mg/L in the second treatment batch. Our result indicated that the green algae were also able to adapt to varied pollution loads in different treatment batches
    • …
    corecore