19 research outputs found
Efficacy of autologous bone marrow buffy coat grafting combined with core decompression in patients with avascular necrosis of femoral head: a prospective, double-blinded, randomized, controlled study
Introduction
Avascular necrosis of femoral head (ANFH) is a progressive disease that often leads to hip joint dysfunction and even disability in young patients. Although the standard treatment, which is core decompression, has the advantage of minimal invasion, the efficacy is variable. Recent studies have shown that implantation of bone marrow containing osteogenic precursors into necrotic lesion of ANFH may be promising for the treatment of ANFH.
Methods
A prospective, double-blinded, randomized controlled trial was conducted to examine the effect of bone-marrow buffy coat (BBC) grafting combined with core decompression for the treatment of ANFH. Forty-five patients (53 hips) with Ficat stage I to III ANFH were recruited. The hips were allocated to the control group (core decompression + autologous bone graft) or treatment group (core decompression + autologous bone graft with BBC). Both patients and assessors were blinded to the treatment options. The clinical symptoms and disease progression were assessed as the primary and secondary outcomes.
Results
At the final follow-up (24 months), there was a significant relief in pain (P \u3c0.05) and clinical joint symptoms as measured by the Lequesne index (P \u3c0.05) and Western Ontario and McMaster Universities Arthritis Index (P \u3c0.05) in the treatment group. In addition, 33.3% of the hips in the control group have deteriorated to the next stage after 24 months post-procedure, whereas only 8% in the treatment group had further deterioration (P \u3c0.05). More importantly, the non-progression rates for stage I/II hips were 100% in the treatment group and 66.7% in the control group.
Conclusion
Implantation of the autologous BBC grafting combined with core decompression is effective to prevent further progression for the early stages of ANFH.
Trial registration
ClinicalTrials.gov identifier NCT01613612. Registered 13 December 2011
Activating Endogenous Neurogenesis for Spinal Cord Injury Repair: Recent Advances and Future Prospects
After spinal cord injury (SCI), endogenous neural stem cells are activated and migrate to the injury site where they differentiate into astrocytes, but they rarely differentiate into neurons. It is difficult for brain-derived information to be transmitted through the injury site after SCI because of the lack of neurons that can relay neural information through the injury site, and the functional recovery of adult mammals is difficult to achieve. The development of bioactive materials, tissue engineering, stem cell therapy, and physiotherapy has provided new strategies for the treatment of SCI and shown broad application prospects, such as promoting endogenous neurogenesis after SCI. In this review, we focus on novel approaches including tissue engineering, stem cell technology, and physiotherapy to promote endogenous neurogenesis and their therapeutic effects on SCI. Moreover, we explore the mechanisms and challenges of endogenous neurogenesis for the repair of SCI
The Immune Cell Landscape in Different Anatomical Structures of Knee in Osteoarthritis: A Gene Expression-Based Study
Background. Immunological mechanisms play a vital role in the pathogenesis of knee osteoarthritis (KOA). Moreover, the immune phenotype is a relevant prognostic factor in various immune-related diseases. In this study, we used CIBERSORT for deconvolution of global gene expression data to define the immune cell landscape of different structures of knee in osteoarthritis. Methods and Findings. By applying CIBERSORT, we assessed the relative proportions of immune cells in 76 samples of knee cartilage, 146 samples of knee synovial tissue, 40 samples of meniscus, and 50 samples of knee subchondral bone. Enumeration and activation status of 22 immune cell subtypes were provided by the obtained immune cell profiles. In synovial tissues, the differences in proportions of plasma cells, M1 macrophages, M2 macrophages, activated dendritic cells, resting mast cells, and eosinophils between normal tissues and osteoarthritic tissues were statistically significant (P<0.05). The area under the curve was relatively large in resting mast cells, dendritic cells, and M2 macrophages in receiver operating characteristic analyses. In subchondral bones, the differences in proportions of resting master cells and neutrophils between normal tissues and osteoarthritic tissues were statistically significant (P<0.05). In subchondral bones, the proportions of immune cells, from the principle component analyses, displayed distinct group-bias clustering. Resting mast cells and T cell CD8 were the major component of first component. Moreover, we revealed the potential interaction between immune cells. There was almost no infiltration of immune cells in the meniscus and cartilage of the knee joint. Conclusions. The immune cell composition in KOA differed substantially from that of healthy joint tissue, while it also differed in different anatomical structures of the knee. Meanwhile, activated mast cells were mainly associated with high immune cell infiltration in OA. Furthermore, we speculate M2 macrophages in synovium and mast cells in subchondral bone may play an important role in the pathogenesis of OA
Preparation and Properties of 3D Printed Alginate–Chitosan Polyion Complex Hydrogels for Tissue Engineering
Three-dimensional (3D) printing holds great potential for preparing sophisticated scaffolds for tissue engineering. As a result of the shear thinning properties of an alginate solution, it is often used as 3D printing ink. However, it is difficult to prepare scaffolds with complexity structure and high fidelity, because the alginate solution has a low viscosity and alginate hydrogels prepared with Ca2+ crosslinking are mechanically weak. In this work, chitosan powders were dispersed and swelled in an alginate solution, which could effectively improve the viscosity of an alginate solution by 1.5–4 times. With the increase of chitosan content, the shape fidelity of the 3D printed alginate–chitosan polyion complex (AlCh PIC) hydrogels were improved. Scanning electron microscope (SEM) photographs showed that the lateral pore structure of 3D printed hydrogels was becoming more obvious. As a result of the increased reaction ion pairs in comparison to the alginate hydrogels that were prepared with Ca2+ crosslinking, AlCh PIC hydrogels were mechanically strong, and the compression stress of hydrogels at a 90% strain could achieve 1.4 MPa without breaking. In addition, human adipose derived stem cells (hASCs) adhered to the 3D printed AlCh PIC hydrogels and proliferated with time, which indicated that the obtained hydrogels were biocompatible and could potentially be used as scaffolds for tissue engineering
Efficacy of Wallis interspinous dynamic stabilization implant in the treatment of primary lumbar disc herniation: A prospective randomised controlled trial
Purpose:To investigate the efficacy of Wallis implant after lumbar discectomy compared with discectomy alone for patients with primary lumbar disc herniation.Methods: A total of 77 patients with primary lumbar disc herniation were randomly assigned to receive posterior lumbar discectomy combined with (n =40, Wallis group) or without (n =37, control group) Wallis implantation. The primary outcomes were Visual Analogue Scale (VAS), Japanese Orthopedics Association (JOA) score and Oswestry Disability Index (ODI). The secondary outcomes were intervertebral disc height (DH), range of motion (ROM) of operated segments, complications and the time of surgery.Results: No significant difference was found between the two groups for the VAS, JOA and ODI scores at 1 week after treatment (P>0.05). Wallis group had better scores than that for control group at 12 months (P<0.05) and last follow-up time (P<0.05). Wallis group had higher DH than that for the control group at each follow-up moment (P<0.001).Conclusion: Combination treatment may provide benefits comparable to lumbar discectomy alone for patients with lumbar disc herniation by restoring the intervertebral disc height and preserving limited motion of the spine
The Upregulation of COX2 in Human Degenerated Nucleus Pulposus: The Association of Inflammation with Intervertebral Disc Degeneration
Intervertebral disc degeneration (IVDD) is an important risk factor of low back pain. We previously found upregulated markers of fibrosis, the late stage of chronic inflammation, in degenerated IVD with a small number of clinical specimens. Here, we aimed to study on a larger scale the association of cyclooxygenase 2 (COX2), an inflammation and/or pain marker, with IVDD. This study involved 107 LBP participants. The IVD degeneration level was graded on a 1–5 scale according to the Pfirrmann classification system. Discs at grades 1-3 were further grouped as white discs with grades 4-5 as black discs. We recorded baseline information about age, gender, body mass index (BMI), diabetes history, smoking history, and magnetic resonance imaging (MRI). Their association with IVDD was statistically analyzed. The expression level of COX2 was investigated by immunohistochemistry. The total integrated COX2 optical density (IOD), number of COX2-positive cells, and total cell number of each image were counted and analyzed by Image-Pro Plus software. The IOD and number of COX2-positive cells were divided by the total cell number to obtain COX2 expression density (IOD/cell) and COX2 positivity (cell+/cell). As a result, among the baseline information investigated, only age was found to have a significant association with IVDD. The IOD/cell was found to be significantly increased from grade 2 to grade 5, as well as in black discs compared to white discs. The cell+/cell displayed the same trend that it increased in highly degenerative discs compared to their counterparts. In conclusion, the expression of COX2 is associated with IVDD, which highlights COX2 as a biomarker for IVD degeneration and indicates the involvement of inflammation and pain signaling in IVDD
A secret of high-rate mass transfer in anammox granular sludge : "lung-like breathing"
The granulation of anaerobic ammonium oxidation (Anammox) biomass can play a key role in developing stable and high-rate working of anammox process. It is important to know the working mechanism of anammox granular sludge (AnGS) for the optimization of reactor performance. In this study, a “lung-like breathing” determinator was invented to investigate the working behavior of AnGS in the bioreactor. The results showed that the AnGS had a regular expansion and contraction phenomenon, which was called “lung-like breathing”. With the biological loading rate (BLR) at 0.114 kg-N/(kg-VSS·d), the expansion and contraction amplitude (ExCA) was 1.29 ± 0.05%, and the expansion and contraction frequency (ExCF) was 39.3 ± 1.6 times/h. The AnGS cultivated in a bioreactor with higher nitrogen removal rate (NRR) was found to have the higher ExCA and ExCF when determinated at the same BLR, and the “lung-like breathing” behavior of one type of AnGS was revealed to bear a significantly (p < 0.05) positive correlation with the specific anammox activity (SAA). The mass transfer flux from “lung-like breathing” was far greater than that from molecular diffusion, which was regarded as a vital mechanism for the AnGS to demonstrate its high activity. These findings provided theoretical basis and technical parameters for the optimization of anammox nitrogen removal process.This research was financially supported by the National Natural Science Foundation of China (51578484) and Research Funds for Central Universities (2017xzzx010-03). Major Scientific and Technological Specialized Project of Zhejiang Province (2015C03013) was also be highly appreciated
Eustachian tube dysfunction in patients with house dust mite-allergic rhinitis
Abstract Background One of the important pathogeneses of eustachian tube dysfunction (ETD) is nasal inflammatory disease. The prevalence of allergic rhinitis (AR) in adults ranges from 10 to 30% worldwide. However, research on the status of eustachian tubes in AR patients is still very limited. Methods This prospective controlled cross-sectional study recruited 59 volunteers and 59 patients with AR from Sun Yat-sen Memorial Hospital. Visual analogue scale (VAS) scores for AR symptoms and seven-item Eustachian Tube Dysfunction Questionnaire (ETDQ-7) scores were collected for both groups. Nasal endoscopy, tympanography and eustachian tube pressure measurement (tubomanometry, TMM) were used for objective assessment. All AR patients underwent 1 month of treatment with mometasone furoate nasal spray and oral loratadine. Then, the nasal condition and eustachian tube status were again evaluated. Results TMM examination revealed that 22 patients (39 ears, 33.1%) among the AR patients and 5 healthy controls (7 ears, 5.9%) had abnormal eustachian pressure. Twenty-two AR patients (37.3%) and 9 healthy controls had an ETDQ-7 score ≥ 15. With regard to nasal symptoms of AR, the VAS scores of nasal obstruction were correlated with the ETDQ-7 scores, and the correlation coefficient was r = 0.5124 (p < 0.0001). Nasal endoscopic scores were also positively correlated with ETDQ-7 scores, with a correlation coefficient of 0.7328 (p < 0.0001). After 1 month of treatment, VAS scores of nasal symptoms, endoscopic scores and ETDQ-7 scores were significantly decreased in AR patients (p < 0.0001), and TMM examination also suggested that eustachian tube function was significantly improved after treatment (p < 0.0001). Conclusions AR patients, especially those with severe nasal obstruction, could have ETD. The local conditions of the pharyngeal orifices of the eustachian tubes are closely related to the symptoms of ETD. After treatment with nasal glucocorticoids and oral antihistamines, eustachian tube function can significantly improve as nasal symptoms subside. Trial registration Chinese Clinical Trial Registery (ChiCTR2000029071) Registered 12 January 2020—Retrospectively registered, http://www.chictr.org.cn/edit.aspx?pid=48328&htm=
The performance of anammox reactor during start-up : enzymes tell the story
Start-up is the first and essential step in the operation of anammox (anaerobic ammonia oxidation) reactor. It is helpful to know the progress of start-up for the real-time optimization of reactor performance. In this work, a start-up mode was successfully established, by which the anammox reactor was smoothly put into use, with NLR (Nitrogen Loading Rate) and NRR (Nitrogen Removal Rate) of 11.0 and 10.1 kg-N /(m3 d), respectively. During the start-up, the dehydrogenase, alkaline phosphatase, hydrazine oxidase and heme of the anammox granular sludge were investigated and their activity/content was correlated with the reactor performance. The activity of dehydrogenase and alkaline phosphatase was found to decrease with the elevation of NLR. On the contrary, the hydrazine oxidase activity and heme content were observed to increase with the elevation of NLR. Based on the relative enzyme level, an enzyme indicator system was created to monitor the start-up progress of anammox reactor