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After spinal cord injury (SCI), endogenous neural stem cells are activated and migrate to 
the injury site where they differentiate into astrocytes, but they rarely differentiate into neu-
rons. It is difficult for brain-derived information to be transmitted through the injury site 
after SCI because of the lack of neurons that can relay neural information through the injury 
site, and the functional recovery of adult mammals is difficult to achieve. The development 
of bioactive materials, tissue engineering, stem cell therapy, and physiotherapy has provid-
ed new strategies for the treatment of SCI and shown broad application prospects, such as 
promoting endogenous neurogenesis after SCI. In this review, we focus on novel approach-
es including tissue engineering, stem cell technology, and physiotherapy to promote endog-
enous neurogenesis and their therapeutic effects on SCI. Moreover, we explore the mecha-
nisms and challenges of endogenous neurogenesis for the repair of SCI.

Keywords: Spinal cord injury, Endogenous neurogenesis, Tissue engineering, Stem cells, 
Biomaterials

INTRODUCTION

Spinal cord injury (SCI) usually leads to permanent sensory, 
motor and autonomic dysfunction downstream of the injury 
level, often accompanied by complications such as muscle spasm, 
sexual dysfunction, and neuropathic pain.1 SCI seriously affects 
the patient’s physical and mental health and life expectancy, 
which brings a heavy economic burden to the patient’s family 
and society.2 To date, treatments of SCI focus on surgical de-
compression for stabilizing the lesion level and preventing fur-
ther damage to the adjacent spinal cord, combined with post-

operative rehabilitation to teach patients how to effectively cope 
with their disability.3,4 In sum, there is no clinically effective ther-
apy for neural restoration and regeneration for SCI and the re-
covery from SCI has always been a global concern.5

In the acute phase of SCI, ischemia, necrosis, edema, and oxi-
dative stress can result in direct neuronal and glial cell necrosis 
and apoptosis.6 With disease progression, the lesion area con-
tinues to expand with infiltration of inflammatory factors, glial 
scaring, fibrous scarring, and formation of cavities, providing 
an unsuitable microenvironment for nerve regeneration.7,8 Ad-
ditionally, neurons of the adult mammalian central nervous 
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system have demonstrated poor spontaneous regeneration and 
self-repair ability after SCI.9,10 In brief, the main difficulty of 
brain-derived descending corticospinal tracts (CST) passing 
across an injured area lies in the insufficient regeneration po-
tential of endogenous nerve cells and the adverse microenvi-
ronment.11 In tetraplegics and paraplegics with complete SCI, 
brain-derived descending nerve fibers barely regenerate and 
traverse through the lesion area; thus, brain-derived descend-
ing neural information can hardly retransmit to target neurons 
to regulate limb movement.12

To promote CST regeneration, a large number of studies have 
been carried out using animal models of complete SCI, focus-
ing on enhancing the intrinsic axonal regeneration kinetics of 
neurons, cell transplantation, and gene therapy.13,14 Of these, en-
hancing the regeneration of endogenous neural stem cell (NSC) 
has the potential to form a neural network, restricting tissue 
damage and neural loss after SCI.15 Due to the self-renewal and 
multipotent properties, NSCs can serve as reliable cell resources 
for the repair of SCI. After SCI, injury-activated NSCs migrate 
into the lesion area, where they may proliferate and differenti-
ate into neurons.16 Some studies have proposed novel tissue en-
gineering strategies involving growth-related factors, biomate-
rials and physiotherapy, achieved axon regeneration in CST in 
small rodent models and improvements in the microenviron-
ment at site of injury.17,18 However, in adult mammals, CST re-
generation is unable to penetrate the SCI area and reconnect 
target neurons which are caudal to the injury site.19 Therefore, a 
promising strategy is to trigger the neuronal differentiation of 
endogenous NSCs into interneurons at the injury site and to 
form a neural network that receives the neural information from 
CST and transmits this information to the caudal end of the in-
jury site to restore the voluntary motor function.20 In this re-
view, we focus on novel approaches and their mechanisms that 
trigger endogenous neurogenesis in SCI repair to achieve func-
tional recovery.

ENDOGENOUS NEUROGENESIS IN SCI

NSCs transplantation is considered one of the most promis-
ing cell therapy for SCI repair.21 NSCs are primitive cells with 
self-renewal and multidirectional differentiation capabilities in 
the central nervous system and have the potential to proliferate 
and differentiate into neurons, astrocytes, and oligodendrocytes.22 
However, the apoptosis of neurons is one of the main patholog-
ical mechanisms of secondary SCI injury.23 Therefore, research-
ers expect that inducing NSC proliferation and differentiation 

into neurons to compensate for the loss of neurons is an effec-
tive approach to reduce pathological damage and promote nerve 
regeneration.24

Ependymal cells (ECs), which line in the central canal of the 
spinal cord, have NSC-like potential (Fig. 1A). Normally, ECs 
function as a barrier to the brain and spinal cord and rarely un-
dergo cell division.25 Following SCI, the injury-activated ECs 
massively migrate out of the central canal and demonstrate NSC-
like potential during their migration to the injury epicenter.26 
However, most injury-activated ECs start to divide rapidly and 
generate oligodendrocytes that myelinate axons and astrocytes 
at the site of the glial scar, but not neuron.27,28 Whereas astro-
cytes accumulate primarily at the edge of the lesion area, form-
ing a dense glial scar. Although astrocytes in glial scar can gen-
erate inhibitory factors, such as chondroitin sulfate proteogly-
cans that prevent axons from penetrating the scar, numerous 
beneficial effects of the scar have been discovered.29,30 Astrocytes 
in the glial scar restrict secondary enlargement of the lesion, in-
filtration of inflammation-associated cells, and prevent further 
cell death (Fig. 1B).31 In addition, the neuronal differentiation 
of endogenous ECs into oligodendrocytes may guide neural fi-
ber regeneration and remyelination, playing a crucial role in the 
repair of motor and sensory function.32 Apart from preserving 
spinal cord integrity, restricting inflammatory cell infiltration, 
and providing neurotrophic support for neurons, endogenous 
NSCs also have the potential to differentiate into functional in-
terneurons.33 Lin showed that the interneuronal networks formed 
by NSCs can effectively transmit neural information across the 
injury site, restoring motor functions.34 Therefore, how to effec-
tively induce the ECs as abundant and reliable neuronal sources 
is a major concern in SCI repairing.

Some studies have been designed to promote endogenous 
neurogenesis (Table 1), in which neurons can transmit ascend-
ing and descending impulses, and transfer neural information 
to propriospinal nerve endings.35,36 Although descending nerve 
fibers cannot regenerate and penetrate across the lesion area, it 
may be feasible to trigger endogenous neurogenesis by trans-
plantation of functional biomaterials which provides a neuronal 
network able to transmit neural information across the lesion 
area, improving both motor and sensory functions (Fig. 1C).37 
Previously, endogenous neurogenesis was defined as the activa-
tion of endogenous NSCs, and the generation of new neurons.38,39 
Recently, some researchers supplemented the endogenous neu-
rogenesis as follows: injury-activated endogenous NSCs migrat-
ed to the lesion area and then differentiated into mature neu-
rons. The mature neurons then were able to connect with host 
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spinal cord, forming functional neuronal relay (Fig. 1D).15,40

Although the endogenous ECs have been reported to differ-
entiate into neurons which is an appealing candidate for SCI 
repairing, the efficiency of neuronal differentiation is far from 
satisfactory.41 Physiologically, endogenous NSCs mostly differ-
entiate into oligodendrocytes and astrocytes and the number of 
differentiated interneurons is relatively small, especially in adult 
mammals.35 To improve the efficiency of designed neuronal dif-
ferentiation of ECs, a variety of bioactive materials has been ap-
plied to stimulate SCI repair.

BIOMATERIALS FOR TRIGGERING 
ENDOGENOUS NEUROGENESIS

After SCI, a cascade of pathophysiological progress, such as 
inflammation, neural death and reactive astrocytes may result 
in cystic cavity and glial scar formation.42 The cavity and glial 

scar block the transduction of electrical signal and stimulation 
of spinal cord tissue, inhibiting the proliferation and neuronal 
differentiation of endogenous NSCs.43 Considering the rapid 
achievements in biomaterials, scientists have developed novel 
biomaterials which mimic the mechanical properties of the spi-
nal cord targeting SCI repair.28,44 The hybrid hydrogels, with 
highly porous structure, facilitate the transportation of nutri-
ents and in particular, some hydrogels seamlessly integrate with 
the host tissue by filling the lesion cavity and conforming to the 
shape of the defect.45 Moreover, the designed hydrogel promotes 
axon regeneration via remodeling of the extracellular matrix 
(ECM) through minimally invasive injection to prevent second-
ary damage.46 These biomaterials have achieved therapeutic ef-
fects in repairing SCI, improving the microenvironment and 
eliminating secondary damage. However, some studies suggest 
that better recovery may be obtained if the biomaterial can acti-
vate and guide endogenous NSC differentiation into neurons 

Fig. 1. Activation of endogenous neurogenesis after spinal cord injury. (A) Spinal cord. (B) Inflammation and scar formation af-
ter spinal cord injury. (C) Activation of endogenous neurogenesis by transplanting functional biomaterials. (D) Formation of 
endogenous neuronal relay. NSC, neural stem cell.
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while improving the microenvironment for nerve regeneration.47

Recent studies have reported that a series of novel hydrogels 
could trigger endogenous neurogenesis without the need for 
additional therapeutic agents and lead to the recovery of motor 
function. Li et al.45 designed an injectable nanofiber-hydrogel 
with interfacial bonding properties, providing mechanical strength 
and porosity at the lesion area. In addition to providing mechani-
cal support to the constrained spinal cord, the composite mate-
rial also promoted neurogenesis, proregenerative macrophage 
polarization, and angiogenesis. After treating with nanofiber-
hydrogels, the immature neurons at the injury site gradually in-
creased over times and at 28 days the number of immature neu-
rons was 2-fold higher than in controls. Therefore, the designed 
nanofiber-hydrogel was able to promote the harsh microenvi-
ronment at the injury site, which supported the neuronal dif-
ferentiation and survival of NSCs.

Zhao et al.48 developed gelatin and hyaluronic acid-based hy-
drogels which were constituted of principal ECM. The trans-
plantation of the hybrid hydrogel eliminated the inflammatory 
responses and suppressed the formation of glial scar. Moreover, 
the hybrid hydrogel effectively contributed to endogenous neu-
rogenesis, improving NSC migration, neuron maturation, and 
axonal regeneration. Zhu et al.49 developed Mg/Al layered dou-
ble hydroxide nanoparticles to repair the completely transected 
SCI. They found that the application of nanoparticles accelerated 
NSC migration and neuronal differentiation, activated the L-Ca 
(2+) channel, and induced action potentials. By implantation of 
the layered double hydroxide, they observed BrdU-labeled en-
dogenous NSCs and neurons in the injured area, with an im-
proved electrophysiological and behavior performance in the 
SCI rat. Further analysis demonstrated that layered double hy-
droxide inhibited inflammation through the transforming 
growth factor-β receptor 2 and activated neural cell proliferation.

Apart from mimicking the physical strength, researchers were 
also interested in developing high-conductivity biomaterials 
which somehow contributed to endogenous neurogenesis.50 
Zhou et al.51 developed a biocompatible conducting polymer 
hydrogel, mimicking mechanical properties of the spinal cord 
and demonstrating high conductivity. In vitro, conducting poly-
mer hydrogel promoted NSCs differentiation into neurons and 
suppressed the differentiation into astrocytes. In vivo, the con-
ducting polymer hydrogel could trigger endogenous neurogen-
esis at the lesion site, improving locomotor functions in rats. Luo 
et al.52 also employed an injectable, self-healing, and electro-con-
ductive hydrogels to treat SCI. These hydrogels, composed of 
natural ECM and polypyrrole, exhibit similar mechanical and 

electrical properties to the natural spinal cord. In vitro, conduc-
tive injectable hydrogels effectively promoted neuronal differ-
entiation, axonal growth, and inhibited astrocyte differentiation. 
In vivo, the conductive hydrogels activated endogenous NSC 
neurogenesis and triggered the regeneration of myelinated axon 
at the site of lesion through the Pl3k/Akt and MEK/ERK (mito-
gen-activated protein kinase kinase/extracellular signal-regulat-
ed kinase) pathways.

Recently, Ma et al.53 investigated novel tissue scaffolds, which 
not only met the mechanical properties of pathological spinal 
cord tissue but also comprised a proregenerative matrix. To con-
struct poly (lactic-co-glycolic acid) shell-ensheathed decellular-
ized spinal cord scaffolds (PLGA-DSCS), researchers removed 
the inhibitory components and preserved the permissive ma-
trix by electrospinning and chemical extraction strategies. The 
decellularized spinal cord (DSC) scaffold was mechanically en-
hanced with a thin PLGA. In vitro, the DSC scaffolds allowed 
robust neurogenesis and promoted NSC differentiation into 
neurons. In vivo, the PLGA-DSCS implanted at the injury area 
created a favorable microenvironment for migration, residence, 
and neuronal differentiation of endogenous NSCs. Furthermore, 
PLGA-DSCS presented a mild immunogenic property, polariz-
ing macrophages into the M2 phenotype. Therefore, the PLGA-
DSCS could have significant therapeutic effects on neural re-
generation and function recovery.

The biomaterials discussed above could integrate with the 
host tissue by filling the lesion cavity and somehow promoting 
the endogenous neurogenesis.37 For example, the hybrid hydro-
gels were able to provide mechanical support and high conduc-
tivity for the lesion area and the physical characteristics of hy-
drogels endured in the harsh microenvironment, eliminated 
inflammatory processes and glial scar formation to facilitate 
generation of NSC progeny leading to significant recovery of 
motor function.47 The modified DSC, which is composed of a 
proregenerative matrix was able to create a favorable microen-
vironment for neural regeneration.53 However, the efficiency of 
neuronal differentiation of ECs is currently unsatisfactory.54 To 
better modulate the microenvironment and guide the direction-
al differentiation in the injury site, functional neurotrophic fac-
tors may be a promising strategy.

BIOMATERIALS LOADED WITH 
NEUROTROPHIC FACTORS TO 
ACTIVATE ENDOGENOUS NEUROGENESIS

Neurotrophic factors have been reported to modulate various 
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aspects of neural activity.55 Numerous neurotrophic factors, such 
as neurotrophin-3 (NT-3), brain-derived neurotrophic factor 
(BDNF), nerve growth factor (NGF), ciliary neurotrophic fac-
tor (CNTF) and basic fibroblast growth factor (bFGF), play a 
crucial role in neural proliferation, migration, neuronal differ-
entiation and synaptogenesis.56 In vitro, NT-3 promotes the neu-
ronal differentiation and formation of synapses from NSC-de-
rived neurons, demonstrating the potency of synaptic transmis-
sion.57,58 Similarly, NGFs have been reported to promote axonal 
sprouting, guide axon regeneration and myelination after nerve 
injury and the upregulated NGF at the perilesion site contribut-
ing to repair and synaptic plasticity after SCI.59-60 Furthermore, 
CNTF is able to promote the survival and axonal growth of neu-
rons and achieved a promyelinating effect in vitro.61 These bio-

active factors could ameliorate the harsh microenvironment 
and improve the NSC-like potential of ECs after SCI. Transplan-
tation of the mentioned neurotrophic factors may create a pro-
regenerative microenvironment, thus increasing endogenous 
repair in both rats and nonhuman primates with SCI.62,63 How-
ever, the release of neurotrophic factors suffers from the short 
half-lives observed under physiological conditions and limited 
administration in vivo. Normally, neurotrophic factors diffuse 
rapidly at the site but are unable to maintain a suitable concen-
tration.64 To improve the adverse microenvironment conditions, 
it is necessary to elicit endogenous neurogenesis and to promote 
axon growth, scientists have designed numerous functional bio-
materials combined with neurotrophic factors to achieve long-
term release (Fig. 2B). The novel strategies are focused not only 

Fig. 2. Therapeutic strategies to trigger endogenous neurogenesis. (A) Transplantation of biomaterials that mimic the mechani-
cal properties of the spinal cord. (B) Transplantation of functional biomaterials loaded with neurotrophic factors. (C) Trans-
planting functional biomaterials for sustained small molecule drugs release. (D) Transplantation of exogenous stem cells. (E) 
Physiotherapy. MSC, mesenchymal stem cell; NSC, neural stem cell.
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on supporting NSC-derived neuron differentiation and increas-
ing remyelination, but also on improving the formation of syn-
aptic connections between propriospinal nerve fibers and neu-
rons at the injury site.9,64

NT-3 is a crucial growth factor, distributed in both the cen-
tral and peripheral nervous systems.56 In vitro, NT-3 could acti-
vate the tropomyosin receptor kinase C (TrkC) receptor, facili-
tating NSCs proliferation. In vivo, NT-3 has been confirmed to 
promote neurogenesis in the spinal cord and axonal growth in 
the CST.65 Thus, researchers have developed innovative and func-
tional biomaterials able to load NT-3 for the repair of SCI. Yang 
et al.40 constructed a 14-week slow-release preparation of NT-3 
in a biodegradable chitosan material. After transplanting this 
material to the injury area, the slow release of NT-3 improved 
the harsh microenvironment and attracted endogenous NSCs 
able to migrate into the SCI site and differentiate into neurons. 
Most importantly, endogenous neurons derived from NSCs con-
nected with propriospinal neurons and formed functional neu-
ral networks, leading to both sensory and motor recovery in 
experimental animals. Similarly, Li et al.64 developed a gelatin 
sponge scaffold coated with NT-3/fibroin (NF-GS) to achieve a 
controlled artificial release lasting 28 days. In vivo, NF-GS im-
proved the concentration of NT-3 and exhibited proper biocom-
patibility. NF-GS improved tissue regeneration and reduced 
cavity areas in the lesion area. The axon extensions with myelin 
sheath penetrated the glial scar and some of the cells traversed 
the NF-GS. Furthermore, NF-GS abrogated the inflammatory 
response by reducing tumor necrosis factor-α and CD68-posi-
tive cells.

CNTF is a potent survival factor for neurons and oligoden-
drocytes and it promotes neurotransmitter synthesis and neu-
rite outgrowth. Xie et al.66 developed a sodium hyaluronate-
CNTF scaffold that was capable of releasing CNTF for up to 
105 days. The designed scaffold could activate endogenous NSCs 
from the ependymal layer and promote migration of the NSCs 
to the injury site. Furthermore, the endogenous NSCs could 
differentiate into mature neurons, forming synaptic connections 
and receiving excitatory input from the glutamatergic synapse. 
The electrophysiological results of the regenerated neural net-
work, recorded by a planar multielectrode dish system, suggest 
that functional synapses could be established between endoge-
nous NSC-derived neurons and the host spinal cord.

bFGF plays a crucial role in modulating neuronal differentia-
tion and repairing damage. Thus, Shang et al.67 also investigated 
bFGF controlled release system for spinal cord regeneration. 
Under physiological conditions, these scaffolds had proper me-

chanical properties, enabling the release of bFGF for up to 6 
weeks. After implantation, these scaffolds could facilitate revas-
cularization, stimulate endogenous neurogenesis and axon growth 
and inactivate microglia. Similarly, endogenous neurons con-
nected to each other or with propriospinal neurons through a 
synapses-like connection. The functional neural networks es-
tablished between the lesion area and the host spinal cord even-
tually resulted in recovery from locomotion.

In summary, the above studies demonstrate that functional 
biomaterials were able to achieve slow release of neurotrophic 
factors in vivo. Furthermore, the loading of designed functional 
biomaterials with neurotrophic factors could trigger endoge-
nous neurogenesis of NSCs by creating a regenerative microen-
vironment, reducing inflammation, improving the migration of 
NSCs, promoting neuronal differentiation and neurite outgrowth, 
and generating functional synapses with the propriospinal nerve 
fibers of the host.68 Without transplanting exogenous stem cells, 
endogenous NSCs differentiated into interneurons and func-
tioned as neuronal relays that reconnect with the original down-
stream targets. Although neurotrophic factors could effectively 
promote the microenvironment in the area of the injury and 
modulate the activity of endogenous NSCs, it has proven diffi-
cult for neurotrophic factors to fulfill slow-release and maintain 
long-term activity. Therefore, researchers are interested in find-
ing bioactive materials that intelligently control the release of 
factors.

BIOMATERIALS WITH SUSTAINED 
SMALL MOLECULE DRUGS RELEASE 
THAT TRIGGER ENDOGENOUS 
NEUROGENESIS

In addition to growth factors, a series of small molecule drugs 
are associated with modulating the survival, proliferation, and 
neuronal differentiation of NSCs, inhibiting inflammation, and 
promoting angiogenesis in vivo. For example, the anticancer 
drug taxol has the potential to reduce scar formation, decrease 
axonal degeneration and stabilize microtubule.69 Cetuximab, an 
epidermal growth factor receptor (EGFR) antagonist, induces 
significant neuronal differentiation, generating de novo neuron 
formations, and reducing astrocytic differentiation of neural 
progenitor cells in acute SCI.70 To achieve sustained-release of 
small molecule drugs that promote endogenous neurogenesis 
after SCI, researchers have developed functional collagen scaf-
folds that have demonstrated good biodegradability and excel-
lent biocompatibility (Fig. 2C).
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Li et al.71 implanted cetuximab, an EGFR signaling antago-
nist, in modified linear ordered collagen scaffolds. After trans-
plantation to injury sites in canine, low-dose cetuximab effec-
tively improved migration and encouraged the neuronal pro-
duction of endogenous NSCs at the site of injury and inhibited 
the expression of chondroitin sulfate proteoglycans in the glial 
scar. Furthermore, neurons derived from endogenous NSCs 
demonstrated myelination and synapse formation which could 
connect with host spinal neurons to restore locomotion. In sum-
mary, cetuximab-modified linear ordered collagen scaffolds may 
provide a suitable microenvironment for endogenous neuro-
genesis and enable neuronal relays after acute SCI. In one study, 
Fan et al.36 engineered a collagen-binding EGFR antibody by 
fusing the EGFR antibody with a collagen-binding domain to 
achieve its sustained-release from the collagen scaffold. In vitro, 
the engineered collagens promoted neuronal differentiation and 
neurite outgrowth under myelin. After transplantation into rat 
models with SCI, endogenous NSCs for injury-activated neuro-
genesis were observed, and endogenous NSCs could differenti-
ate into functional neurons and reconnect the 2 injured stumps.

In other studies, the same researchers also investigated the 
taxol-modified collagen scaffold for SCI repair in canine mod-
els.72 After the complete transection of 1 cm of spinal cord, a 
linear-order collagen scaffold was implanted that allowed the 
slow release of taxol into the injured area. In addition to stabi-
lizing microtubules, taxol demonstrated therapeutic effects in 
restricting scar formation and significantly promoting neuro-
genesis and axon regeneration after severe spinal cord transec-
tion in a canine model. In vitro, taxol promoted the neuronal 
differentiation of NSCs through the p38 MAPK signaling path-
way. Therefore, the taxol-modified scaffold provided a suitable 
microenvironment for neuronal differentiation of endogenous 
NSCs and the extension of neuronal axons resulted in signifi-
cant promotion of locomotion and motor-evoked potentials.

Other attempts, including small molecules, have great thera-
peutic potential for repairing the spinal cord. Yang et al.72 load-
ed functional small molecules including LDN193189, SB431542, 
CHIR99021, and P7C3-A20 into an injectable collagen hydro-
gel. The small molecules could induce neurogenesis, increase 
neuronal differentiation of spinal cord NSCs and inhibit astro-
gliogenesis at the injury site. Neuronal regeneration at lesion 
sites leads to recovery from locomotion.

Altogether, the above studies demonstrate that biodegradable 
and biocompatible materials loaded with small molecule drugs 
are able to achieve the slow-release of growth factors in vivo. Fur-
thermore, these designed functional biomaterials could create a 

suitable microenvironment, promoting neuronal differentiation 
and synapse formation with the propriospinal nerve fibers of 
the host, leading to better locomotion and electrophysiology. 
However, for severe SCI or extensive defects, mammals may 
suffer massive neuron apoptosis within the area of the lesion 
and the transplantation of biomaterials may not trigger quanti-
tative endogenous neurons to repair impaired neuron circuits.74,75 
A promising solution is represented by the transplantation of 
exogenous stem cells. These strategies may induce many more 
endogenous stem cells to participate in the repair process and 
restore the defected neural circuit through the synergistic ef-
fects of both endogenous and exogenous stem cells.58.76,77

EXOGENOUS STEM CELLS THAT 
TRIGGER ENDOGENOUS 
NEUROGENESIS

Transplantation of exogenous stem cells is an attractive strat-
egy for repairing SCI. In the 1980s, transplantation of embry-
onic spinal cord tissue at the injured site promoted the regener-
ation of the descending nerve fibers of the brain, resulting in 
locomotion recovery.78,79 In this section, we focus on the thera-
peutic effects of exogenous stem cells on endogenous NSCs mi-
gration and neuronal differentiation and on generating func-
tional synapses with host neurons (Fig. 2D).

Yuan et al.80 designed a DNA hydrogel with high permeabili-
ty, self-healing, and proper mechanical support for repairing a 
completely transected spinal cord in rat models. The DNA hy-
drogel-carrying exogenous NSCs promoted the formation of a 
renascent neural network, enabling sufficient migration, prolif-
eration, and neuronal differentiation of both implanted and en-
dogenous NSCs. After 8 weeks of transplantation the rats showed 
better hindlimb function and detectable motor-evoked poten-
tials through synapses of the regenerated neural networks. Fur-
thermore, the hydrogel DNA network offered a regenerative 
microenvironment by expressing quantitative growth factors 
including BDNF, GDNF, NGF, and NT-3.

Focusing on chronic SCI in large animals, Li et al.71 investi-
gated a collagen-based biomaterial loaded with human umbili-
cal cord-derived mesenchymal stem cells in a chronic SCI ca-
nine model. Two months after SCI, the glial scar tissue was re-
moved and the biomaterials named the “NeuroRegen scaffold” 
were transplanted into the lesion area. The implantation of the 
“NeuroRegen scaffold” facilitated locomotor recovery and en-
dogenous neurogenesis in the center of the lesion area. Addi-
tionally, some of the de novo neurons matured into 5-hydroxy-
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tryptamine positive neurons and the regenerated axon fibers 
demonstrated remyelination and synapse connections in the 
injured area at 1 year after injury. The implantation of the “Neu-
roRegen scaffold” also reduced the formation of glial scar at the 
lesion level one year after implantation.

Previous studies have showed that NGF was a crucial growth 
factor regulating neuronal regeneration.60 Wang et al.81 designed 
modified scaffolds loading NSCs overexpressing NGF for tar-
geted delivery of NGF to the site of the injury. Four weeks after 
transplantation, NGF-NSCs attenuated damage in the center of 
the lesion and NGF-NSCs that survived in the core of the lesion 
maintained high levels of NGF release. The NGF-NSC graft 
modulated the microenvironment around the lesion core by re-
ducing oligodendrocyte loss, reducing astrocytosis and demye-
lination, protecting neurons, and increasing the expression of 
multiple growth factors. Most importantly, in the subacute stage 
of traumatic SCI, the neuroprotective effect of NGF-NSCs may 
be mediated by activating TrkA, upregulating cAMP-response 
element binding protein, and microRNA-132 expression around 
the epicenter of the injury site. In summary, the exogenous stem 
cells achieved functional recovery by modulating the microen-
vironment and enhancing endogenous neurogenesis in rats.

In summary, exogenous stem cell-seeded biomaterials pro-
moted the migration, proliferation, and neuronal differentia-
tion of endogenous NSCs. The researchers also observed the 
formation of synaptic connections and the formation of neural 
circuits through implanted and endogenous stem cells. The ther-
apeutic effects of exogenous stem cells targeting endogenous 
neurogenesis may be attributed to the creation of a favorable 
microenvironment for axon regeneration, by secreting multiple 
growth factors to guide migration.58 To endow host propriospi-
nal neurons with better integration capability with exogenous-
derived and endogenous-derived neurons, combination with 
physiotherapy strategies can improve intrinsic growth capacity, 
activate endogenous neurogenesis and improve the rigid mi-
croenvironment.

PHYSIOTHERAPY STRATEGIES FOR 
ACTIVATING ENDOGENOUS 
NEUROGENESIS

Physiotherapy has previously been regarded as a symptomat-
ic treatment for SCI. Current advanced physiotherapy strategies 
which include epidural electrical stimulation (EES) and brain-
spine interface can restore leg motor functions after SCI.84,85 
EES following activity-specific stimulation protocols can mimic 

the natural activation of motor neurons by multielectrode pad-
dle. Three patients following an activity-specific stimulation 
program were able to complete standing, walking, swimming, 
and controlling trunk movements in a single day.84 Although 
physiotherapy has shown sustained progress in improving mo-
tor skills, little is known about the functional effects of physio-
therapy on neuroprotection, modulating environment and trig-
gering endogenous neurogenesis.

To improve the hostile microenvironment and poor intrinsic 
growth capacity, Xu et al.85 have reported that the application of 
electroacupuncture on Governor Vessel acupuncture points 
(GV-EA) could promote neuronal survival and axonal regener-
ation after SCI. In GV-EA, needles are inserted at GV acupunc-
ture points where a small low-frequency pulsed current can be 
delivered, ventilating the meridians to promote blood flow. The 
study suggests that GV-EA could stimulate cells in the dorsal 
root ganglion to release calcitonin gene-related peptide (CGRP) 
from the afferent terminals in the spinal cord. However, in vivo 
and in vitro results demonstrated that CGRP could trigger NT-3 
synthesis and secretion by CGRP/receptor activity-modifying 
protein (RAMP)/calcium/calmodulin-dependent protein ki-
nase (alphaCaMKII) pathway. Furthermore, the mentioned ef-
fect could be interrupted by dorsal rhizotomy and blocking the 
CGRP/RAMP1/alphaCaMKII pathway. Therefore, GV-EA could 
activate intrinsic growth and promote the survival, axonal growth, 
and synaptic maintenance of spinal cord neurons in the injured 
area by increasing NT-3 production (Fig. 2E).

Fire needle acupuncture, known as fire needle, is a physio-
therapy technique that combines acupuncture and cauteriza-
tion with heated needle therapy. Xu et al.86 found that fire nee-
dle improved locomotor function in SCI rats and increased nes-
tin, Gal-C expression while inhibited glial fibrillary acidic pro-
tein expression after SCI. These findings indicated that fire nee-
dle promoted endogenous NSC migration, proliferation, and 
differentiation into neurons at the injured site and inhibited dif-
ferentiated NSCs into astrocytes. Increased Wnt3a, GSK3β, β-ca
tenin, and ngn1 expression and down regulation of ERK1/2 and 
of cyclinD1 gene and protein expression were observed in the 
fire needle group. Therefore, endogenous neurogenesis could 
be mediated by activation of Wnt/β-catenin and inhibition of 
the ERK pathway.

In conclusion, electrical stimulation has the potential to pro-
mote the survival and neuronal differentiation of endogenous 
NSCs, and contributes to the activation of the propriospinal 
neuronal network, axonal growth and formation of synaptic 
connections at the injured site. Electrical stimulation also trig-
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gers the synthesis and secretion of neurotrophic factors by cells 
in the injured spinal cord.87,88 Other physiotherapies including 
optogenetic stimulation and magnetic stimulation have been 
reported to improve the aversive microenvironment, generate 
bioelectricity, modulate neural plasticity, and promote CST re-
generation,89 but these functional effects with respect to endog-
enous neurogenesis remain uncertain. In the future, the endog-
enous neurogenesis effects of various physiotherapies should be 
fully investigated. Furthermore, recent studies have reported 
that a combination of multiple strategies, including exogenous 
cell transplantation, the delivery of neurotrophic factors or small 
molecule drugs and neuromodulation by physiotherapy can 
achieve more effective repair. The combination of multiple treat-
ments is considered an ideal approach that may provide new 
insights for clinical treatments.

COMBINATION TREATMENTS

In the literature, some studies describe the therapeutic effects 
aimed at repairing SCI. For example, biomaterials mimicking 
the physical characteristics of the spinal cord can compensate 
for tissue loss, create a better microenvironment, and eliminate 
secondary damage.52 Neurotrophic factors and small molecule 
drugs overcome the harsh microenvironment and promote syn-
apse formation with the propriospinal nerve fibers of the host.64,71 
The transplantation of exogenous stem cells has offered cell sourc-
es, and secreted growth factors able to guide cell migration and 
to create a favorable microenvironment.76,91 Physiotherapy strat-
egies can activate the propriospinal neuronal network, and in-
tegrate regenerated neurons with the spinal cord fiber.88,91 Most 
importantly, all these strategies somehow trigger endogenous 
neurogenesis, promoting the migration, proliferation, and neu-
ronal differentiation of endogenous stem cells at injury site. In 
fact, the efficiency of repairing SCI using a single treatment with-
out combining other therapeutic agents was low.92

The following issues or limitations should be carefully con-
sidered: (1) improvement of the microenvironment of the im-
paired spinal cord; (2) triggering of the migration, proliferation 
and neuronal differentiation of endogenous or exogenous stem 
cells in the replacement of dead neurons; and (3) promotion 
the integration of regenerated cells.90 Therefore, the combina-
tion of multiple therapeutic strategies may be the key to SCI re-
pair.

To promote tissue repair efficacy, Li et al.65 combined slow 
neurotrophic factors release and exogenous cell transplantation 
strategies, and transplanted a TrkC-modified NSC-derived neu-

ral network tissue in the NF-GS. The NF-GS created an NT-3- 
enriched microenvironment and the NSCs overexpress TrkC, 
NT-3 receptor, thus creating a functional neuronal population-
dominated neural network. In addition to providing a regener-
ative niche for long-term survival of the exogenous neural net-
work at the injured site, the novel strategy allowed for the sus-
tained differentiation of endogenous NSCs into neurons. Trans-
plantation of the NT-3-releasing scaffold at the lesion site estab-
lished a favorable microenvironment and supported long-term 
survival of exogenous neurons and endogenous de novo neu-
rons. This could compensate for the loss of neurons and could 
lead to an increase in neuronal population at the injury site bring-
ing structural repair to the sensorimotor pathways.

A combination of scaffold-based biochemical and electrical 
stimulation signals may be useful to repair SCI. Liu et al.43 in-
vestigated a novel approach that combined thermosensitive poly-
mer electroactive hydrogel (TPEH) loaded with NGF with elec-
trical stimulation. The designed hydrogel was able to achieve 
the sustained-release of NGF for 24 days and demonstrated high 
conductance on electrical stimulation. In vitro, the TPEH with 
NGF improved the neuronal differentiation of NSCs and axon 
growth. In vivo, electrical stimulation and TPEH with NGF pro-
moted endogenous neurogenesis and led to improved motor 
function.

Current combinatorial treatments focus on providing a re-
generative environment to support the long-time survival, pro-
liferation and neuronal differentiation of NSCs. However, we 
still have limited knowledge about the remodeling and integra-
tion of synapses with propriospinal neurons.93 The application 
of neuroregulatory technology, including EES, and transcuta-
neous spinal cord stimulation, can excite the spinal neural net-
work and regulate synaptic plasticity.94 Therefore, tapping its 
full potential for better integration with host nerve tracts will 
require a combination of neuroregulatory techniques with bio-
materials.

CHALLENGES AND FUTURE 
PERSPECTIVES

With recent advances in the understanding of the repair mech-
anism of tissue engineering along with physiotherapy, endoge-
nous neurogenesis has become a significant mechanism for SCI 
research.47,95 Despite some attempts to achieve functional recov-
ery by targeting endogenous neurogenesis, challenges and ob-
stacles remain. For large mammals, it is still challenging to en-
sure that endogenous NSCs survive, proliferate, and differenti-
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ate into neurons in adequate quantities.96 Considering the ob-
stacles mentioned above, combination therapy may be the most 
appropriate approach. In the future, combination treatments 
will be designed as selective approaches that may interact to cat-
alyze with each other.97 For instance, transplantation of bioma-
terials creates a favorable microenvironment for axon regenera-
tion, promotes exogenous neuronal differentiation, and facili-
tates synapse formation with the endogenous newborn neurons 
that contribute to neurological recovery. In turn, neuromodula-
tion techniques could theoretically excite spinal neural networks, 
strengthen synaptic connections, promote plasticity, and facili-
tate integration into the central nervous system.98 To reach their 
full potential, combinatorial treatments must adhere to the strict 
temporal window and select an appropriate SCI model.

Apart from revealing the mechanisms and effects underlying 
endogenous neurogenesis through combination treatments, ef-

forts should be made to further expand the applications in clin-
ical practice: (1) Differences in neuroanatomy (distribution of 
CST) and size gaps between humans and rodents hinder clini-
cal trials. In rodents, the lesion site is about a few millimeters 
long, whereas human injuries can span centimeters.99 To con-
duct neural information through lesion area, the functional re-
covery of SCI patients needs more endogenous newborn neu-
rons and longer-distance axon growth. Despite being costly and 
time-consuming, SCI models of non–human-primate and large 
mammals provide numerous advantages for evaluating treat-
ment efficacy before clinical trials due to their similar neuro-
anatomical and functional characteristics.100 (2) It is important 
to note that SCI patients exhibit variability in the neurological 
level of injury, lesion severity, treatment duration, and types of 
early treatment, making injuries unreproducible.101 Possible so-
lutions may be aligning the animal models closely with clinical 

Fig. 3. Schematic illustration of combined strategies using exogenous stem cell-seeded biomaterials and physiotherapy for the 
repair of spinal cord injury.
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conditions.5 (3) Immunosuppression is often required in SCI 
patients who receive NSCs transplantation.102 The application 
of immunosuppressants increases the risks of malignancies, in-
fection, and other side effects in humans. The possible solutions 
include the use of low-immunogenic biomaterials or endoge-
nous NSCs. (4) The exogenous stem cells have the potential to 
form ectopic aggregates as stem cells migrate and proliferate in 
the central nervous system.103 Engineered neural network tis-
sues provide terminally differentiated cells and a stable matrix 
that successfully mitigates the migration of stem cells.104 Alth
ough no severe adverse events including cancer, infections, and 
allergic reaction have been identified in some Phase I-II clinical 
trials, long-term side effects require constant monitoring.105 (5) 
The majority of SCI patients can be classified as chronic SCI 
which is still understudied and its treatments remain more chal-
lenging than acute/subacute SCI.1 In the future, clinical trials 
will shift their focus to the treatment of chronic SCI.

CONCLUSION

Currently, triggering endogenous neurogenesis represents a 
potentially practical and feasible strategy for SCI repair.15 In this 
review, promising therapeutic strategies, including implanta-
tion of biomaterials alone, implantation of biomaterials loaded 
with neurotrophic factors or small molecule drugs, transplanta-
tion of exogenous stem cells, physiotherapy, and combination 
treatments have been proposed. The current evidence suggests 
that these strategies may provide a more supportive microenvi-
ronment and trigger the migration, proliferation and neuronal 
differentiation of endogenous NSCs. However, the efficiency 
and therapeutic effects of single strategies for SCI repair are rel-
atively low and functional recovery is currently unsatisfacto-
ry.106 To better cope with SCI repair, combinatory strategies may 
be the optimal choice. The combination of physiotherapy with 
bioactive materials loaded with exogenous stem cells (Fig. 3) 
can be a promising approach which can trigger endogenous neu-
rogenesis to reconstruct the neural circuits and regulate neuro-
plasticity for better integration with host nerve tracts. In the fu-
ture, more clinical studies will be required to ensure the safety 
of combination therapy and to translate this combination treat-
ment modality into a wide range of clinical settings.
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