2 research outputs found

    Fire affects the taxonomic and functional composition of soil microbial communities, with cascading effects on grassland ecosystem functioning

    Get PDF
    Fire is a crucial event regulating the structure and functioning of many ecosystems.Yet few studies have focused on how fire affects taxonomic and functional diversi‐ties of soil microbial communities, along with changes in plant communities and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects in a grasslandecosystem 9 months after an experimental fire at the Jasper Ridge Global ChangeExperiment site in California, USA. Fire altered soil microbial communities con ‐siderably, with community assembly process analysis showing that environmentalselection pressure was higher in burned sites. However, a small subset of highly connected taxa was able to withstand the disturbance. In addition, fire decreasedthe relative abundances of most functional genes associated with C degradationand N cycling, implicating a slowdown of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated above‐ and belowground plant growth, likely enhancing plant–microbe competition for soil inorganic N, which was reduced by a factor of about 2. To synthesize those findings, we performed structural equationmodeling, which showed that plants but not microbial communities were responsi‐ble for significantly higher soil respiration rates in burned sites. Together, our resultsdemonstrate that fire ‘reboots’ the grassland ecosystem by differentially regulating plant and soil microbial communities, leading to significant changes in soil C and N dynamics

    Long-term elevated CO2 shifts composition of soil microbial communities in a Californian annual grassland, reducing growth and N utilization potentials

    No full text
    International audienceThe continuously increasing concentration of atmospheric CO2 has considerably altered ecosystem functioning. However, few studies have examined the long-term (i.e. over a decade) effect of elevated CO2 on soil microbial communities. Using 16S rRNA gene amplicons and a GeoChip microarray, we investigated soil microbial communities from a Californian annual grassland after 14 years of experimentally elevated CO2 (275 ppm higher than ambient). Both taxonomic and functional gene compositions of the soil microbial community were modified by elevated CO2. There was decrease in relative abundance for taxa with higher ribosomal RNA operon (rrn) copy number under elevated CO2, which is a functional trait that responds positively to resource availability in culture. In contrast, taxa with lower rrn copy number were increased by elevated CO2. As a consequence, the abundance-weighted average rrn copy number of significantly changed OTUs declined from 2.27 at ambient CO2 to 2.01 at elevated CO2. The nitrogen (N) fixation gene nifH and the ammonium-oxidizing gene amoA significantly decreased under elevated CO2 by 12.6% and 6.1%, respectively. Concomitantly, nitrifying enzyme activity decreased by 48.3% under elevated CO2, albeit this change was not significant. There was also a substantial but insignificant decrease in available soil N, with both nitrate (NO3) (-27.4%) and ammonium (NH4+) (-15.4%) declining. Further, a large number of microbial genes related to carbon (C) degradation were also affected by elevated CO2, whereas those related to C fixation remained largely unchanged. The overall changes in microbial communities and soil N pools induced by long-term elevated CO2 suggest constrained microbial N decomposition, thereby slowing the potential maximum growth rate of the microbial community
    corecore