7,383 research outputs found

    System-level, Input-output and New Parameterizations of Stabilizing Controllers, and Their Numerical Computation

    Full text link
    It is known that the set of internally stabilizing controller Cstab\mathcal{C}_{\text{stab}} is non-convex, but it admits convex characterizations using certain closed-loop maps: a classical result is the {Youla parameterization}, and two recent notions are the {system-level parameterization} (SLP) and the {input-output parameterization} (IOP). In this paper, we address the existence of new convex parameterizations and discuss potential tradeoffs of each parametrization in different scenarios. Our main contributions are: 1) We first reveal that only four groups of stable closed-loop transfer matrices are equivalent to internal stability: one of them is used in the SLP, another one is used in the IOP, and the other two are new, leading to two new convex parameterizations of Cstab\mathcal{C}_{\text{stab}}. 2) We then investigate the properties of these parameterizations after imposing the finite impulse response (FIR) approximation, revealing that the IOP has the best ability of approximating Cstab\mathcal{C}_{\text{stab}} given FIR constraints. 3) These four parameterizations require no \emph{a priori} doubly-coprime factorization of the plant, but impose a set of equality constraints. However, these equality constraints will never be satisfied exactly in numerical computation. We prove that the IOP is numerically robust for open-loop stable plants, in the sense that small mismatches in the equality constraints do not compromise the closed-loop stability. The SLP is known to enjoy numerical robustness in the state feedback case; here, we show that numerical robustness of the four-block SLP controller requires case-by-case analysis in the general output feedback case.Comment: 20 pages; 5 figures. Added extensions on numerial computation and robustness of closed-loop parameterization

    AISHELL-1: An Open-Source Mandarin Speech Corpus and A Speech Recognition Baseline

    Full text link
    An open-source Mandarin speech corpus called AISHELL-1 is released. It is by far the largest corpus which is suitable for conducting the speech recognition research and building speech recognition systems for Mandarin. The recording procedure, including audio capturing devices and environments are presented in details. The preparation of the related resources, including transcriptions and lexicon are described. The corpus is released with a Kaldi recipe. Experimental results implies that the quality of audio recordings and transcriptions are promising.Comment: Oriental COCOSDA 201

    On the Equivalence of Youla, System-level and Input-output Parameterizations

    Full text link
    A convex parameterization of internally stabilizing controllers is fundamental for many controller synthesis procedures. The celebrated Youla parameterization relies on a doubly-coprime factorization of the system, while the recent system-level and input-output characterizations require no doubly-coprime factorization but a set of equality constraints for achievable closed-loop responses. In this paper, we present explicit affine mappings among Youla, system-level and input-output parameterizations. Two direct implications of the affine mappings are 1) any convex problem in Youla, system level, or input-output parameters can be equivalently and convexly formulated in any other one of these frameworks, including the convex system-level synthesis (SLS); 2) the condition of quadratic invariance (QI) is sufficient and necessary for the classical distributed control problem to admit an equivalent convex reformulation in terms of Youla, system-level, or input-output parameters.Comment: 8 pages, 3 figure
    • …
    corecore