57 research outputs found

    A self-supervised CNN for image watermark removal

    Full text link
    Popular convolutional neural networks mainly use paired images in a supervised way for image watermark removal. However, watermarked images do not have reference images in the real world, which results in poor robustness of image watermark removal techniques. In this paper, we propose a self-supervised convolutional neural network (CNN) in image watermark removal (SWCNN). SWCNN uses a self-supervised way to construct reference watermarked images rather than given paired training samples, according to watermark distribution. A heterogeneous U-Net architecture is used to extract more complementary structural information via simple components for image watermark removal. Taking into account texture information, a mixed loss is exploited to improve visual effects of image watermark removal. Besides, a watermark dataset is conducted. Experimental results show that the proposed SWCNN is superior to popular CNNs in image watermark removal

    Characterizing Operating Condition-Based Formaldehyde Emissions of Light-Duty Diesel Trucks in China Using a PEMS-HCHO System

    Get PDF
    Formaldehyde (HCHO) plays a critical role in atmospheric photochemistry and public health. While existing studies have suggested that vehicular exhaust is an important source of HCHO, the operating condition-based diesel truck HCHO emission measurements remain severely limited due to the limited temporal resolution and accuracy of measurement techniques. In this study, we characterized the second-by-second HCHO emissions from 29 light-duty diesel trucks (LDDTs) in China over dynamometer and real-world driving tests using a portable online HCHO emission measurement system (PEMS-HCHO), considering various operating conditions. Our results suggested that the HCHO emissions from LDDTs might be underestimated by the widely used offline DNPH-HPLC method. The HCHO emissions at a 200 s cold start from China V LDDT can be up to 50 mg/start. Different driving conditions over dynamometer and real-world driving tests led to a 2-4 times difference in the HCHO emission factors (EFs). Under real-world hot-running conditions, the HCHO EFs of China III, IV, V, and VI LDDTs were 43.5 ± 35.7, 10.6 ± 14.2, 8.8 ± 5.1, and 3.2 ± 1.2 mg/km, respectively, which significantly exceeded the latest California low emission vehicle III HCHO emission standard (2.5 mg/km). These findings highlighted the significant impact of vehicle operating conditions on HCHO emissions and the urgency of regulating HCHO emissions from LDDTs in China

    Research on the Mode of China’s Power Spot Market

    No full text
    At present, the construction of China’s power spot market is advancing steadily. This paper studies the characteristics and functions of the spot market, analyses the market environment and requirements, studies the key elements and designs the market mode for the spot market under the new situation, and puts forward suggestions for some key problems in the actual operation. This paper can provide reference for promoting the top-level design and operation of China’s power spot market

    Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization

    No full text
    Mesenchymal stromal cells (MSCs) are multipotent and self-renewable cells that reside in almost all postnatal tissues. In recent years, many studies have reported the effect of MSCs on the innate and adaptive immune systems. MSCs regulate the proliferation, activation, and effector function of T lymphocytes, professional antigen presenting cells (dendritic cells, macrophages, and B lymphocytes), and NK cells via direct cell-to-cell contact or production of soluble factors including indoleamine 2,3-dioxygenase, prostaglandin E2, tumor necrosis factor-stimulated gene/protein 6, nitric oxide, and IL-10. MSCs are also able to reprogram macrophages from a proinflammatory M1 phenotype toward an anti-inflammatory M2 phenotype capable of regulating immune response. Because of their capacity for differentiation and immunomodulation, MSCs have been used in many preclinical and clinical studies as possible new therapeutic agents for the treatment of autoimmune, degenerative, and inflammatory diseases. In this review, we discuss the central role of MSCs in macrophage polarization and outcomes of diseases such as wound healing, brain/spinal cord injuries, and diseases of heart, lung, and kidney in animal models

    Differentiation and migration of bone marrow mesenchymal stem cells transplanted through the spleen in rats with portal hypertension.

    Get PDF
    AIMS: The goals of this paper were to evaluate the differentiation of bone marrow mesenchymal stem cells (BMSCs) into hepatocyte-like cells in vitro, and to determine whether stem cells can migrate and plant into the liver with portal hypertension accompanied by the end-stage of liver disease. METHODS: BMSCs were isolated from rats and amplified with hepatocyte growth factor (HGF) and fibroblast growth factor-4 (FGF-4). The expression of alpha-fetoprotein (AFP), cytokeratin 18 (CK-18), and albumin (ALB) was detected by immunofluorescence in induced cells. Rats were randomly divided into experimental (with common bile duct ligation) and control groups. After injection of fluorescence labeled cells, cell distribution was observed under a fluorescence microscope. The integrated optical density (IOD) and cell distribution scores were evaluated using Image-Pro Plus 6.0 software. The portal pressure was measured before the rats were killed. RESULTS: After being induced with HGF and FGF-4, the Golgi apparatus, endoplasmic reticulum, ribosomes, and mitochondria all significantly increased in the fifth generation cells. Immunofluorescent analysis showed that the induced cells expressed AFP, CK-18, and ALB. BMSCs were stained by CM-Dil, and the labeling rate was as high as 95.5%. The portal pressure in experimental group was much higher than that of the control group (18.04±2.35 vs. 9.75±1.40 cm H2O p<0.01). The IOD of transplanted cells in the experimental group was also significantly higher than that of the control group (11.30±2.09×10(5) vs. 2.93±0.88×10(5), p<0.01). In addition, the cell distribution score in the experimental group was lower than that of the control group (1.99±0.36 vs. 2.36±0.27, P<0.05). CONCLUSIONS: The combination of HGF and FGF-4 induces the differentiation of BMSCs into hepatocyte-like cells, which express AFP, CK-18, and ALB. In addition, the recruitment of BMSCs (after transplantation in the spleen) was improved in rats with portal hypertension

    Camrelizumab for cancers in patients living with HIV: one-single center experience

    No full text
    Abstract Objectives The primary objective was to evaluate the safety of the anti-PD-1 antibody camrelizumab in people living with HIV (PLWH); the secondary objective was to evaluate tumor response. Methods From May 8, 2018, to December 10, 2021, twenty-four patients with HIV and advanced cancer as well as a CD4+ T-cell count greater than or equal to 100 cells/µL were treated with camrelizumab in daily practice. We describe the demographic characteristics, safety, and clinical course of these 24 PLWH with cancer treated with camrelizumab. Safety was assessed using the current Common Terminology Criteria for Adverse Events (CTCAE). The tumor response was assessed according to the Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST 1.1). Results The median number of cycles was 8 (4–26). Only two grade 3 adverse reactions were reported (no toxic deaths or immune-related deaths). Among the 24 patients, 2 (8%) complete responses and 6 (25%) partial responses were observed. 7 patients (29%) were at stable tumor status and others progressed. Conclusions Data from the present study strongly support the use of camrelizumab (monoclonal antibodies targeting the PD-1 pathway) in this population, as it appears to be a feasible approach with no deleterious effects on PLWH and tolerability and acceptable efficacy. In addition, these findings further support the inclusion of PLWH with cancer in clinical trials evaluating the safety and efficacy of ICIs on cancer

    Leaf litter traits predominantly control litter decomposition in streams worldwide

    No full text
    Aim Leaf litter decomposition in freshwater ecosystems is a vital process linking ecosystem nutrient cycling, energy transfer and trophic interactions. In comparison to terrestrial ecosystems, in which researchers find that litter traits predominantly regulate litter decomposition worldwide, the dominant factors controlling its decomposition in aquatic ecosystems are still debated, with global patterns not well documented. Here, we aimed to explore general patterns and key drivers (e.g., litter traits, climate and water characteristics) of leaf litter decomposition in streams worldwide. Location Global. Time period 1977-2018. Major taxa studied Leaf litter. Methods We synthesized 1,707 records of litter decomposition in streams from 275 studies. We explored variations in decomposition rates among climate zones and tree functional types and between mesh size groups. Regressions were performed to identify the factors that played dominant roles in litter decomposition globally. Results Litter decomposition rates did not differ among tropical, temperate and cold climate zones. Decomposition rates of litter from evergreen conifer trees were much lower than those of deciduous and evergreen broadleaf trees, attributed to the low quality of litter from evergreen conifers. No significant differences were found between decomposition rates of litter from deciduous and evergreen broadleaf trees. Additionally, litter decomposition rates were much higher in coarse- than in fine-mesh bags, which controled the entrance of decomposers of different body sizes. Multiple regressions showed that litter traits (including lignin, C:N ratio) and elevation were the most important factors in regulating leaf litter decomposition. Main conclusions Litter traits predominantly control leaf litter decomposition in streams worldwide. Although further analyses are necessary to explore whether commonalities of the predominant role of litter traits in decomposition exist in both aquatic and terrestrial ecosystems, our findings could contribute to the use of trait-based approaches in modelling the decomposition of litter in streams globally and exploring mechanisms of land-water-atmosphere carbon fluxes

    Data from: Leaf litter traits predominantly control litter decomposition in streams worldwide

    No full text
    Aim Leaf litter decomposition in freshwater ecosystems is a vital process linking ecosystem nutrient cycling, energy transfer, and trophic interactions. In comparison to terrestrial ecosystems, in which researchers find that litter traits predominantly regulate its decomposition worldwide, the dominant factors controlling litter decomposition in aquatic ecosystems are still debated with global patterns not well documented. Here, we aimed to explore general patterns and key drivers (e.g. litter traits, climate, and water characteristics) of leaf litter decomposition in streams worldwide. Location Global Time period 1977-2018 Leaf litter Methods We synthesized 1707 records of litter decomposition in streams from 275 studies. We explored variations in decomposition rates among climate zones, tree functional types, and between mesh size groups. Regressions were performed to identify the factors that play dominant roles in litter decomposition globally. Results Litter decomposition rates did not differ among tropical, temperate, and cold climate zones. Decomposition rates of litter from evergreen conifer trees (EC) were much lower than those of deciduous and evergreen broad-leaf trees (DB and EB), attributed to the low quality of litter from EC. No significant differences were found between decomposition rates of DB and EB. Additionally, litter decomposition rates were much higher in coarse- than in fine-mesh bags, which control the entrance of decomposers of different body sizes. Multiple regressions showed that litter traits (including lignin, C:N ratio) and altitude were the most important factors in regulating leaf litter decomposition. Main conclusions Litter traits predominantly control leaf litter decomposition in streams worldwide. While further analyses are necessary to explore whether commonalities of litter traits’ predominant role in decomposition exist in both aquatic and terrestrial ecosystems, our findings could contribute to using trait-based approaches in modeling the decomposition of litter in streams globally and exploring mechanisms of land-water-atmosphere carbon fluxes
    • …
    corecore