8 research outputs found

    Ryanodine receptor expression in trophoblasts

    Get PDF
    Trophoblasts of the placenta are the frontline cells involved in communication and exchange of materials between the mother and fetus. Within trophoblasts, calcium signalling proteins are richly expressed. Intracellular free calcium ions are a key second messenger, regulating various cellular activities. Transcellular Ca2+ transport through trophoblasts is essential in fetal skeleton formation. Ryanodine receptors (RyRs) are high conductance cation channels that mediate Ca2+ release from intracellular stores to the cytoplasm. To date, the roles of RyRs in trophoblasts have not been reported. By use of reverse transcription PCR and western blotting, the current study revealed that RyRs are expressed in model trophoblast cell lines (BeWo and JEG-3) and in human first trimester and term placental villi. Immunohistochemistry of human placental sections indicated that both syncytiotrophoblast and cytotrophoblast cell layers were positively stained by antibodies recognising RyRs; likewise, expression of RyR isoforms was also revealed in BeWo and JEG-3 cells by immunofluorescence microscopy. In addition, changes in [Ca2+]i were observed in both BeWo and JEG-3 cells upon application of various RyR agonists and antagonists, using fura-2 fluorescent videomicroscopy. Furthermore, endogenous placental peptide hormones, namely angiotensin II, arginine vasopressin and endothelin 1, were demonstrated to increase [Ca2+]i in BeWo cells, and such increases were suppressed by RyR antagonists and by blockers of the corresponding peptide hormone receptors. These findings indicate that 1) multiple RyR subtypes are expressed in human trophoblasts; 2) functional RyRs in BeWo and JEG-3 cells response to both RyR agonists and antagonists; 3) RyRs in BeWo cells mediate Ca2+ release from intracellular store in response to the indirect stimulation by endogenous peptides. These observations suggest that RyR contributes to trophoblastic cellular Ca2+ homeostasis; trophoblastic RyRs are also involved in the functional regulation of human placenta by coupling to endogenous placental peptide-induced signalling pathways

    Calcium signaling in oomycetes: an evolutionary perspective

    Get PDF
    Oomycetes are a family of eukaryotic microbes that superficially resemble fungi, but which are phylogenetically distinct from them. These organisms cause major global economic losses to agriculture and fisheries, with representative pathogens being Phytophthora infestans, the cause of late potato blight and Saprolegnia diclina, the instigator of “cotton molds” in fish. As in all eukaryotes, cytoplasmic Ca2+ is a key second messenger in oomycetes, regulating life-cycle transitions, controlling motility and chemotaxis and, in excess, leading to cell-death. Despite this, little is known about the molecular mechanisms regulating cytoplasmic Ca2+ concentrations in these organisms. Consequently, this review analyzed the presence of candidate calcium channels encoded within the nine oomycete genomes that are currently available. This revealed key differences between oomycetes and other eukaryotes, in particular the expansion and loss of different channel families, and the presence of a phylum-specific group of proteins, termed the polycystic kidney disease tandem ryanodine receptor domain (PKDRR) channels

    Polycystic Kidney Disease Ryanodine Receptor Domain (PKDRR) Proteins in Oomycetes

    No full text
    In eukaryotes, two sources of Ca2+ are accessed to allow rapid changes in the cytosolic levels of this second messenger: the extracellular medium and intracellular Ca2+ stores, such as the endoplasmic reticulum. One class of channel that permits Ca2+ entry is the transient receptor potential (TRP) superfamily, including the polycystic kidney disease (PKD) proteins, or polycystins. Channels that release Ca2+ from intracellular stores include the inositol 1,4,5-trisphosphate/ryanodine receptor (ITPR/RyR) superfamily. Here, we characterise a family of proteins that are only encoded by oomycete genomes, that we have named PKDRR, since they share domains with both PKD and RyR channels. We provide evidence that these proteins belong to the TRP superfamily and are distinct from the ITPR/RyR superfamily in terms of their evolutionary relationships, protein domain architectures and predicted ion channel structures. We also demonstrate that a hypothetical PKDRR protein from Phytophthora infestans is produced by this organism, is located in the cell-surface membrane and forms multimeric protein complexes. Efforts to functionally characterise this protein in a heterologous expression system were unsuccessful but support a cell-surface localisation. These PKDRR proteins represent potential targets for the development of new “fungicides”, since they are of a distinctive structure that is only found in oomycetes and not in any other cellular organisms

    Characterisation of fluorescently tagged human PAC1 receptors : the in vitro analysis of hPAC1-hop1 and hPAC1-bull receptor isoforms

    No full text
    The pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are neuropeptides belong to the VIP-glucagon growth hormone releasing factor-secretin superfamily. A broad spectrum of physiological effects can be elicited by PACAP and VIP via PAC₁, VPAC₁ and VPAC₂ receptors. The activation of PAC₁ receptor is PACAP-selective with relatively low affinity for VIP. The splice variants of human PACi (hPAC₁) receptor containing full N terminus and either the hopl (hPAC₁₋hop₁) or null (hPAC₁₋null) form of the third intercellular loop (ic3) had been demonstrated to mediate cyclic AMP and inositol phosphates production by PACAP38 stimulation (Lutz et aL, 2006). This present study created novel cell lines stably expressing either hPAC₁₋hop₁ or hPAC₁₋null receptors that were fused with green fluorescent protein (GFP) at the C terminus.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Clinicopathological characteristics of rectal multiple neuroendocrine neoplasms and literature review

    No full text
    Abstract Background There are only a few epidemiological reports available for reference. The clinicopathological features are not clear, so there is no consensus on treating rectal multiple neuroendocrine neoplasms. This study aims to summarize the clinicopathological characteristics and preliminarily discuss the clinical diagnosis and treatment of rectal multiple neuroendocrine neoplasms. Methods This study retrospectively analyzed rectal neuroendocrine neoplasm patients diagnosed and treated at the Fourth Hospital of Hebei Medical University from February 2007 to May 2021. The clinicopathological characteristics of rectal multiple neuroendocrine neoplasms were summarized and analyzed in combination with 14 studies on rectal multiple neuroendocrine neoplasms. Results The incidence of RM-NENs accounted for 3.8% of all R-NENs in this study. The number of tumors varied to some extent, the size of tumors was basically no more than 10 mm, and there were more G1 grade tumors. In the analysis of 46 cases with known lymph node metastasis, the difference in lymph node metastasis rate between the number of tumors < 8 and ≥ 8 was statistically significant (p = 0.002). Conclusions The incidence of rectal multiple neuroendocrine neoplasms accounted for 3.8% of all rectal neuroendocrine neoplasms. For rectal multiple neuroendocrine neoplasms, the lymph node metastasis rate was higher when the number of tumors was ≥ 8. The influence of the number of tumors on lymph node metastasis should be considered in the selection of treatment

    Synthesis and Evaluation of Novel Ellipticines and Derivatives as Inhibitors of Phytophthora infestans

    No full text
    The pathogen Phytophthora infestans is responsible for worldwide catastrophic crop damage and discovery of new inhibitors of this organism is of paramount agricultural and industrial importance. Current strategies for crop treatment are inadequate with limitations of efficacy and market alternatives. Ellipticines have recently been reported to have fungicidal properties and have been assessed against P. infestans growth with promising results. We hereby report a probe of the ellipticine framework to investigate the alkyl subunit and screen a set ellipticines and derivatives to identify new lead compounds to act against P. infestans. A series of ellipticinium salt derivatives have been identified with exceptional growth inhibitory activity and apparent lack of toxicity towards a human cell-line surpassing the effect of known and marketed fungicides. This report identifies the potential of this natural product derivative as a novel fungicide

    Butyrate ameliorates quinolinic acid–induced cognitive decline in obesity models

    No full text
    Obesity is a risk factor for neurodegenerative disease associated with cognitive dysfunction, including Alzheimer’s disease. Low-grade inflammation is common in obesity, but the mechanism between inflammation and cognitive impairment in obesity is unclear. Accumulative evidence shows that quinolinic acid (QA), a neuroinflammatory neurotoxin, is involved in the pathogenesis of neurodegenerative processes. We investigated the role of QA in obesity-induced cognitive impairment and the beneficial effect of butyrate in counteracting impairments of cognition, neural morphology, and signaling. We show that in human obesity, there was a negative relationship between serum QA levels and cognitive function and decreased cortical gray matter. Diet-induced obese mice had increased QA levels in the cortex associated with cognitive impairment. At single-cell resolution, we confirmed that QA impaired neurons, altered the dendritic spine’s intracellular signal, and reduced brain-derived neurotrophic factor (BDNF) levels. Using Caenorhabditis elegans models, QA induced dopaminergic and glutamatergic neuron lesions. Importantly, the gut microbiota metabolite butyrate was able to counteract those alterations, including cognitive impairment, neuronal spine loss, and BDNF reduction in both in vivo and in vitro studies. Finally, we show that butyrate prevented QA-induced BDNF reductions by epigenetic enhancement of H3K18ac at BDNF promoters. These findings suggest that increased QA is associated with cognitive decline in obesity and that butyrate alleviates neurodegeneration
    corecore