571 research outputs found

    Fully Automatic Segmentation of Lumbar Vertebrae from CT Images using Cascaded 3D Fully Convolutional Networks

    Full text link
    We present a method to address the challenging problem of segmentation of lumbar vertebrae from CT images acquired with varying fields of view. Our method is based on cascaded 3D Fully Convolutional Networks (FCNs) consisting of a localization FCN and a segmentation FCN. More specifically, in the first step we train a regression 3D FCN (we call it "LocalizationNet") to find the bounding box of the lumbar region. After that, a 3D U-net like FCN (we call it "SegmentationNet") is then developed, which after training, can perform a pixel-wise multi-class segmentation to map a cropped lumber region volumetric data to its volume-wise labels. Evaluated on publicly available datasets, our method achieved an average Dice coefficient of 95.77 ±\pm 0.81% and an average symmetric surface distance of 0.37 ±\pm 0.06 mm.Comment: 5 pages and 5 figure

    High-Dimensional Low-Rank Tensor Autoregressive Time Series Modeling

    Full text link
    Modern technological advances have enabled an unprecedented amount of structured data with complex temporal dependence, urging the need for new methods to efficiently model and forecast high-dimensional tensor-valued time series. This paper provides the first practical tool to accomplish this task via autoregression (AR). By considering a low-rank Tucker decomposition for the transition tensor, the proposed tensor autoregression can flexibly capture the underlying low-dimensional tensor dynamics, providing both substantial dimension reduction and meaningful dynamic factor interpretation. For this model, we introduce both low-dimensional rank-constrained estimator and high-dimensional regularized estimators, and derive their asymptotic and non-asymptotic properties. In particular, by leveraging the special balanced structure of the AR transition tensor, a novel convex regularization approach, based on the sum of nuclear norms of square matricizations, is proposed to efficiently encourage low-rankness of the coefficient tensor. A truncation method is further introduced to consistently select the Tucker ranks. Simulation experiments and real data analysis demonstrate the advantages of the proposed approach over various competing ones.Comment: 61 pages, 6 figure
    • …
    corecore