We present a method to address the challenging problem of segmentation of
lumbar vertebrae from CT images acquired with varying fields of view. Our
method is based on cascaded 3D Fully Convolutional Networks (FCNs) consisting
of a localization FCN and a segmentation FCN. More specifically, in the first
step we train a regression 3D FCN (we call it "LocalizationNet") to find the
bounding box of the lumbar region. After that, a 3D U-net like FCN (we call it
"SegmentationNet") is then developed, which after training, can perform a
pixel-wise multi-class segmentation to map a cropped lumber region volumetric
data to its volume-wise labels. Evaluated on publicly available datasets, our
method achieved an average Dice coefficient of 95.77 ± 0.81% and an average
symmetric surface distance of 0.37 ± 0.06 mm.Comment: 5 pages and 5 figure