36 research outputs found

    Shear strength of cemented sand gravel and rock materials

    Get PDF
    Shear strength is currently a significant parameter in the design of cemented sand gravel and rock (CSGR) dams. Shear strength tests were carried out to compare material without layers noumenon and layer condition. The experimental results showed good linearity in the curves of shear strength and pure grinding tests with correlation coefficients of nearly 97%. The friction coefficient was similar to that of C10 roller-compacted concrete (RCC), but the cohesion value was weaker than that of RCC. The shear strength of the CSGR layers decreased by 40% when retarding mixtures were not added and the layer was paved immediately after 4 h of waiting interval

    New stress–strain model and intelligent quality control technology for cemented material dam

    Get PDF
    Cemented material dam (CMD) can fully utilize local sand, gravel, and rock materials for dam construction. It has many advantages such as flood overtopping without failure, environmental friendliness, economic savings, rapid construction, and so on. It has been rapidly popularised and applied to domestic and foreign projects since it was put forward by the first author. This paper illustrates the reasons for the proposal of CMDs, puts forward the stress–strain model of the cemented mixture and the intelligent system of production quality control, presents the model test results for CMD against flood overtopping, and introduces the practice of dam construction with low-strength soft rock and weathered materials

    Low-intensity pulsed ultrasound promotes the osteogenesis of mechanical force-treated periodontal ligament cells via Piezo1

    Get PDF
    BackgroundLow-intensity pulsed ultrasound (LIPUS) can accelerate tooth movement and preserve tooth and bone integrity during orthodontic treatment. However, the mechanisms by which LIPUS affects tissue remodeling during orthodontic tooth movement (OTM) remain unclear. Periodontal ligament cells (PDLCs) are pivotal in maintaining periodontal tissue equilibrium when subjected to mechanical stimuli. One notable mechano-sensitive ion channel, Piezo1, can modulate cellular function in response to mechanical cues. This study aimed to elucidate the involvement of Piezo1 in the osteogenic response of force-treated PDLCs when stimulated by LIPUS.MethodAfter establishing rat OTM models, LIPUS was used to stimulate rats locally. OTM distance and alveolar bone density were assessed using micro-computed tomography, and histological analyses included hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining and immunohistochemical staining. GsMTx4 and Yoda1 were respectively utilized for Piezo1 functional inhibition and activation experiments in rats. We isolated human PDLCs (hPDLCs) in vitro and evaluated the effects of LIPUS on the osteogenic differentiation of force-treated hPDLCs using real-time quantitative PCR, Western blot, alkaline phosphatase and alizarin red staining. Small interfering RNA and Yoda1 were employed to validate the role of Piezo1 in this process.ResultsLIPUS promoted osteoclast differentiation and accelerated OTM in rats. Furthermore, LIPUS alleviated alveolar bone resorption under pressure and enhanced osteogenesis of force-treated PDLCs both in vivo and in vitro by downregulating Piezo1 expression. Subsequent administration of GsMTx4 in rats and siPIEZO1 transfection in hPDLCs attenuated the inhibitory effect on osteogenic differentiation under pressure, whereas LIPUS efficacy was partially mitigated. Yoda1 treatment inhibited osteogenic differentiation of hPDLCs, resulting in reduced expression of Collagen Ⅰα1 and osteocalcin in the periodontal ligament. However, LIPUS administration was able to counteract these effects.ConclusionThis research unveils that LIPUS promotes the osteogenesis of force-treated PDLCs via downregulating Piezo1

    Mechanics of shaft-loaded blister test for thin film suspended on compliant substrate

    Get PDF
    AbstractBased on the von Kármán plate theory, the mechanics of a shaft-loaded blister test for thin film/substrate systems is studied by considering elastic substrate deformations and residual stresses in these films. In testing, films are attached to a substrate provided with a circular hole, through which loading is applied to the film by a flat-ended shaft of circular cross-section. The effect of substrate deformation on the deflection of the loaded film is taken into account by using a line spring model. For small deflections, an analytical solution is derived, while for large deflections a numerical solution is obtained using the shooting method. The resulting load-shaft displacement relation, which is essential in blister tests, compares favorably with finite element analysis

    The Bearing Capacity of Dam Body Structure with Cemented and Weathered Materials: A Constitutive Model

    No full text
    The Cemented Sand, Gravel, and Rock (CSGR) dam of Xijiang is the world’s first dam to use weathered material. As mechanical tests have shown significant low-strength and nonlinear characteristics in the constitutive curve of CSGR with weathered materials, a more rigorous approach is required in calculation and analysis. Based on the project, a constitutive model of CSGR with weathered material is constructed in the research. Then, the bearing capacity of the dam is studied by using the strength-reduction method and the overload method on the basis of the constitutive model. In order to further obtain the real bearing capacity of the dam, this paper also considers the hydraulic fracturing factor and analyzes its influence at the same time. Conclusions drawn are then applied to the Xijiang project, where the effect is promising

    The Cemented Material Dam: A New, Environmentally Friendly Type of Dam

    No full text
    The first author proposed the concept of the cemented material dam (CMD) in 2009. This concept was aimed at building an environmentally friendly dam in a safer and more economical way for both the dam and the area downstream. The concept covers the cemented sand, gravel, and rock dam (CSGRD), the rockfill concrete (RFC) dam (or the cemented rockfill dam, CRD), and the cemented soil dam (CSD). This paper summarizes the concept and principles of the CMD based on studies and practices in projects around the world. It also introduces new developments in the CSGRD, CRD, and CSD

    Dithionite promoted microbial dechlorination of hexachlorobenzene while goethite further accelerated abiotic degradation by sulfidation in paddy soil

    No full text
    It is of great scientific and practical importance to explore the mechanisms of accelerated degradation of Hexachlorobenzene (HCB) in soil. Both iron oxide and dithionite may promote the reductive dechlorination of HCB, but their effects on the microbial community and the biotic and abiotic mechanisms behind it remain unclear. This study investigated the effects of goethite, dithionite, and their interaction on microbial community composition and structure, and their potential contribution to HCB dechlorination in a paddy soil to reveal the underlying mechanism. The results showed that goethite addition alone did not significantly affect HCB dechlorination because the studied soil lacked iron-reducing bacteria. In contrast, dithionite addition significantly decreased the HCB contents by 44.0–54.9%, while the coexistence of dithionite and goethite further decreased the HCB content by 57.9–69.3%. Random Forest analysis suggested that indicator taxa (Paenibacillus, Acidothermus, Haliagium, G12-WMSP1, and Frankia), Pseudomonas, richness and Shannon’s index of microbial community, and immobilized Fe content were dominant driving factors for HCB dechlorination. The dithionite addition, either with or without goethite, accelerated HCB anaerobic dechlorination by increasing microbial diversity and richness as well as the relative abundance of the above specific bacterial genera. When goethite and dithionite coexist, sulfidation of goethite with dithionite could remarkably increase FeS formation and then further promote HCB dechlorination rates. Overall, our results suggested that the combined application of goethite and dithionite could be a practicable strategy for the remediation of HCB contaminated soil

    Selective HDAC6 inhibitor TubA offers neuroprotection after intracerebral hemorrhage via inhibiting neuronal apoptosis

    No full text
    A large body of evidence has demonstrated that neuronal apoptosis is involved in the pathological process of secondary brain injury following intracerebral hemorrhage (ICH). Additionally, our previous studies determined that the inhibition of HDAC6 activity by tubacin or specific shRNA can attenuate neuronal apoptosis in an oxygen-glucose deprivation reperfusion model. However, whether the pharmacological inhibition of HDAC6-attenuated neuronal apoptosis in ICH remains unclear. In this study, we used hemin-induced SH-SY5Y cells to simulate a hemorrhage state in vitro and adopted a collagenase-induced ICH rat model in vivo to assess the effect of the HDAC6 inhibition. We found a significant increase in HDAC6 during the early stages of ICH. As expected, the acetylated α-tubulin significantly decreased in correlation with the expression of HDAC6. Medium and high doses (25, 40 mg/kg) of TubA, a selective inhibitor of HDAC6, both reduced neurological impairments, histological impairments, and ipsilateral brain edema in vivo. TubA or HDAC6 siRNA both alleviated neuronal apoptosis in vivo and in vitro. Finally, HDAC6 inhibition increased the level of acetylated α-tubulin and Bcl-2 and lowered the expression of Bax and cleaved caspase-3 post-ICH. In general, these results suggested that the pharmacological inhibition of HDAC6 may act as a novel and promising therapeutic target for ICH therapy by up-regulating acetylated α-tubulin and reducing neuronal apoptosis
    corecore