37 research outputs found

    One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion Schedule Flaws and Enhancing Low-Frequency Controls

    Full text link
    It is well known that many open-released foundational diffusion models have difficulty in generating images that substantially depart from average brightness, despite such images being present in the training data. This is due to an inconsistency: while denoising starts from pure Gaussian noise during inference, the training noise schedule retains residual data even in the final timestep distribution, due to difficulties in numerical conditioning in mainstream formulation, leading to unintended bias during inference. To mitigate this issue, certain ϵ\epsilon-prediction models are combined with an ad-hoc offset-noise methodology. In parallel, some contemporary models have adopted zero-terminal SNR noise schedules together with v\mathbf{v}-prediction, which necessitate major alterations to pre-trained models. However, such changes risk destabilizing a large multitude of community-driven applications anchored on these pre-trained models. In light of this, our investigation revisits the fundamental causes, leading to our proposal of an innovative and principled remedy, called One More Step (OMS). By integrating a compact network and incorporating an additional simple yet effective step during inference, OMS elevates image fidelity and harmonizes the dichotomy between training and inference, while preserving original model parameters. Once trained, various pre-trained diffusion models with the same latent domain can share the same OMS module.Comment: Project Page: https://jabir-zheng.github.io/OneMoreStep/, Demo Page: https://huggingface.co/spaces/h1t/oms_sdxl_lc

    MagicFusion: Boosting Text-to-Image Generation Performance by Fusing Diffusion Models

    Full text link
    The advent of open-source AI communities has produced a cornucopia of powerful text-guided diffusion models that are trained on various datasets. While few explorations have been conducted on ensembling such models to combine their strengths. In this work, we propose a simple yet effective method called Saliency-aware Noise Blending (SNB) that can empower the fused text-guided diffusion models to achieve more controllable generation. Specifically, we experimentally find that the responses of classifier-free guidance are highly related to the saliency of generated images. Thus we propose to trust different models in their areas of expertise by blending the predicted noises of two diffusion models in a saliency-aware manner. SNB is training-free and can be completed within a DDIM sampling process. Additionally, it can automatically align the semantics of two noise spaces without requiring additional annotations such as masks. Extensive experiments show the impressive effectiveness of SNB in various applications. Project page is available at https://magicfusion.github.io/

    FakeCLR: Exploring Contrastive Learning for Solving Latent Discontinuity in Data-Efficient GANs

    Full text link
    Data-Efficient GANs (DE-GANs), which aim to learn generative models with a limited amount of training data, encounter several challenges for generating high-quality samples. Since data augmentation strategies have largely alleviated the training instability, how to further improve the generative performance of DE-GANs becomes a hotspot. Recently, contrastive learning has shown the great potential of increasing the synthesis quality of DE-GANs, yet related principles are not well explored. In this paper, we revisit and compare different contrastive learning strategies in DE-GANs, and identify (i) the current bottleneck of generative performance is the discontinuity of latent space; (ii) compared to other contrastive learning strategies, Instance-perturbation works towards latent space continuity, which brings the major improvement to DE-GANs. Based on these observations, we propose FakeCLR, which only applies contrastive learning on perturbed fake samples, and devises three related training techniques: Noise-related Latent Augmentation, Diversity-aware Queue, and Forgetting Factor of Queue. Our experimental results manifest the new state of the arts on both few-shot generation and limited-data generation. On multiple datasets, FakeCLR acquires more than 15% FID improvement compared to existing DE-GANs. Code is available at https://github.com/iceli1007/FakeCLR.Comment: Accepted by ECCV202

    Cross-Modal Contrastive Learning for Robust Reasoning in VQA

    Full text link
    Multi-modal reasoning in visual question answering (VQA) has witnessed rapid progress recently. However, most reasoning models heavily rely on shortcuts learned from training data, which prevents their usage in challenging real-world scenarios. In this paper, we propose a simple but effective cross-modal contrastive learning strategy to get rid of the shortcut reasoning caused by imbalanced annotations and improve the overall performance. Different from existing contrastive learning with complex negative categories on coarse (Image, Question, Answer) triplet level, we leverage the correspondences between the language and image modalities to perform finer-grained cross-modal contrastive learning. We treat each Question-Answer (QA) pair as a whole, and differentiate between images that conform with it and those against it. To alleviate the issue of sampling bias, we further build connected graphs among images. For each positive pair, we regard the images from different graphs as negative samples and deduct the version of multi-positive contrastive learning. To our best knowledge, it is the first paper that reveals a general contrastive learning strategy without delicate hand-craft rules can contribute to robust VQA reasoning. Experiments on several mainstream VQA datasets demonstrate our superiority compared to the state of the arts. Code is available at \url{https://github.com/qizhust/cmcl_vqa_pl}

    Unified Discrete Diffusion for Simultaneous Vision-Language Generation

    Full text link
    The recently developed discrete diffusion models perform extraordinarily well in the text-to-image task, showing significant promise for handling the multi-modality signals. In this work, we harness these traits and present a unified multimodal generation model that can conduct both the "modality translation" and "multi-modality generation" tasks using a single model, performing text-based, image-based, and even vision-language simultaneous generation. Specifically, we unify the discrete diffusion process for multimodal signals by proposing a unified transition matrix. Moreover, we design a mutual attention module with fused embedding layer and a unified objective function to emphasise the inter-modal linkages, which are vital for multi-modality generation. Extensive experiments indicate that our proposed method can perform comparably to the state-of-the-art solutions in various generation tasks

    PartSeg: Few-shot Part Segmentation via Part-aware Prompt Learning

    Full text link
    In this work, we address the task of few-shot part segmentation, which aims to segment the different parts of an unseen object using very few labeled examples. It is found that leveraging the textual space of a powerful pre-trained image-language model (such as CLIP) can be beneficial in learning visual features. Therefore, we develop a novel method termed PartSeg for few-shot part segmentation based on multimodal learning. Specifically, we design a part-aware prompt learning method to generate part-specific prompts that enable the CLIP model to better understand the concept of ``part'' and fully utilize its textual space. Furthermore, since the concept of the same part under different object categories is general, we establish relationships between these parts during the prompt learning process. We conduct extensive experiments on the PartImageNet and Pascal_\_Part datasets, and the experimental results demonstrated that our proposed method achieves state-of-the-art performance

    Toward Understanding the Influence of Individual Clients in Federated Learning

    Full text link
    Federated learning allows mobile clients to jointly train a global model without sending their private data to a central server. Extensive works have studied the performance guarantee of the global model, however, it is still unclear how each individual client influences the collaborative training process. In this work, we defined a new notion, called {\em Fed-Influence}, to quantify this influence over the model parameters, and proposed an effective and efficient algorithm to estimate this metric. In particular, our design satisfies several desirable properties: (1) it requires neither retraining nor retracing, adding only linear computational overhead to clients and the server; (2) it strictly maintains the tenets of federated learning, without revealing any client's local private data; and (3) it works well on both convex and non-convex loss functions, and does not require the final model to be optimal. Empirical results on a synthetic dataset and the FEMNIST dataset demonstrate that our estimation method can approximate Fed-Influence with small bias. Further, we show an application of Fed-Influence in model debugging.Comment: Accepted at AAAI 202
    corecore