131 research outputs found

    Novel passive localization algorithm based on double side matrix-restricted total least squares

    Get PDF
    AbstractIn order to solve the bearings-only passive localization problem in the presence of erroneous observer position, a novel algorithm based on double side matrix-restricted total least squares (DSMRTLS) is proposed. First, the aforementioned passive localization problem is transferred to the DSMRTLS problem by deriving a multiplicative structure for both the observation matrix and the observation vector. Second, the corresponding optimization problem of the DSMRTLS problem without constraint is derived, which can be approximated as the generalized Rayleigh quotient minimization problem. Then, the localization solution which is globally optimal and asymptotically unbiased can be got by generalized eigenvalue decomposition. Simulation results verify the rationality of the approximation and the good performance of the proposed algorithm compared with several typical algorithms

    CSSL-RHA: Contrastive Self-Supervised Learning for Robust Handwriting Authentication

    Full text link
    Handwriting authentication is a valuable tool used in various fields, such as fraud prevention and cultural heritage protection. However, it remains a challenging task due to the complex features, severe damage, and lack of supervision. In this paper, we propose a novel Contrastive Self-Supervised Learning framework for Robust Handwriting Authentication (CSSL-RHA) to address these issues. It can dynamically learn complex yet important features and accurately predict writer identities. Specifically, to remove the negative effects of imperfections and redundancy, we design an information-theoretic filter for pre-processing and propose a novel adaptive matching scheme to represent images as patches of local regions dominated by more important features. Through online optimization at inference time, the most informative patch embeddings are identified as the "most important" elements. Furthermore, we employ contrastive self-supervised training with a momentum-based paradigm to learn more general statistical structures of handwritten data without supervision. We conduct extensive experiments on five benchmark datasets and our manually annotated dataset EN-HA, which demonstrate the superiority of our CSSL-RHA compared to baselines. Additionally, we show that our proposed model can still effectively achieve authentication even under abnormal circumstances, such as data falsification and corruption.Comment: 10 pages, 4 figures, 3 tables, submitted to ACM MM 202

    Information Theory-Guided Heuristic Progressive Multi-View Coding

    Full text link
    Multi-view representation learning aims to capture comprehensive information from multiple views of a shared context. Recent works intuitively apply contrastive learning to different views in a pairwise manner, which is still scalable: view-specific noise is not filtered in learning view-shared representations; the fake negative pairs, where the negative terms are actually within the same class as the positive, and the real negative pairs are coequally treated; evenly measuring the similarities between terms might interfere with optimization. Importantly, few works study the theoretical framework of generalized self-supervised multi-view learning, especially for more than two views. To this end, we rethink the existing multi-view learning paradigm from the perspective of information theory and then propose a novel information theoretical framework for generalized multi-view learning. Guided by it, we build a multi-view coding method with a three-tier progressive architecture, namely Information theory-guided hierarchical Progressive Multi-view Coding (IPMC). In the distribution-tier, IPMC aligns the distribution between views to reduce view-specific noise. In the set-tier, IPMC constructs self-adjusted contrasting pools, which are adaptively modified by a view filter. Lastly, in the instance-tier, we adopt a designed unified loss to learn representations and reduce the gradient interference. Theoretically and empirically, we demonstrate the superiority of IPMC over state-of-the-art methods.Comment: This paper is accepted by the jourcal of Neural Networks (Elsevier) by 2023. A revised manuscript of arXiv:2109.0234

    Intriguing Property and Counterfactual Explanation of GAN for Remote Sensing Image Generation

    Full text link
    Generative adversarial networks (GANs) have achieved remarkable progress in the natural image field. However, when applying GANs in the remote sensing (RS) image generation task, an extraordinary phenomenon is observed: the GAN model is more sensitive to the size of training data for RS image generation than for natural image generation. In other words, the generation quality of RS images will change significantly with the number of training categories or samples per category. In this paper, we first analyze this phenomenon from two kinds of toy experiments and conclude that the amount of feature information contained in the GAN model decreases with reduced training data. Then we establish a structural causal model (SCM) of the data generation process and interpret the generated data as the counterfactuals. Based on this SCM, we theoretically prove that the quality of generated images is positively correlated with the amount of feature information. This provides insights for enriching the feature information learned by the GAN model during training. Consequently, we propose two innovative adjustment schemes, namely Uniformity Regularization (UR) and Entropy Regularization (ER), to increase the information learned by the GAN model at the distributional and sample levels, respectively. We theoretically and empirically demonstrate the effectiveness and versatility of our methods. Extensive experiments on three RS datasets and two natural datasets show that our methods outperform the well-established models on RS image generation tasks. The source code is available at https://github.com/rootSue/Causal-RSGAN

    A Unified GAN Framework Regarding Manifold Alignment for Remote Sensing Images Generation

    Full text link
    Generative Adversarial Networks (GANs) and their variants have achieved remarkable success on natural images. However, their performance degrades when applied to remote sensing (RS) images, and the discriminator often suffers from the overfitting problem. In this paper, we examine the differences between natural and RS images and find that the intrinsic dimensions of RS images are much lower than those of natural images. As the discriminator is more susceptible to overfitting on data with lower intrinsic dimension, it focuses excessively on local characteristics of RS training data and disregards the overall structure of the distribution, leading to a faulty generation model. In respond, we propose a novel approach that leverages the real data manifold to constrain the discriminator and enhance the model performance. Specifically, we introduce a learnable information-theoretic measure to capture the real data manifold. Building upon this measure, we propose manifold alignment regularization, which mitigates the discriminator's overfitting and improves the quality of generated samples. Moreover, we establish a unified GAN framework for manifold alignment, applicable to both supervised and unsupervised RS image generation tasks

    Rethinking Dimensional Rationale in Graph Contrastive Learning from Causal Perspective

    Full text link
    Graph contrastive learning is a general learning paradigm excelling at capturing invariant information from diverse perturbations in graphs. Recent works focus on exploring the structural rationale from graphs, thereby increasing the discriminability of the invariant information. However, such methods may incur in the mis-learning of graph models towards the interpretability of graphs, and thus the learned noisy and task-agnostic information interferes with the prediction of graphs. To this end, with the purpose of exploring the intrinsic rationale of graphs, we accordingly propose to capture the dimensional rationale from graphs, which has not received sufficient attention in the literature. The conducted exploratory experiments attest to the feasibility of the aforementioned roadmap. To elucidate the innate mechanism behind the performance improvement arising from the dimensional rationale, we rethink the dimensional rationale in graph contrastive learning from a causal perspective and further formalize the causality among the variables in the pre-training stage to build the corresponding structural causal model. On the basis of the understanding of the structural causal model, we propose the dimensional rationale-aware graph contrastive learning approach, which introduces a learnable dimensional rationale acquiring network and a redundancy reduction constraint. The learnable dimensional rationale acquiring network is updated by leveraging a bi-level meta-learning technique, and the redundancy reduction constraint disentangles the redundant features through a decorrelation process during learning. Empirically, compared with state-of-the-art methods, our method can yield significant performance boosts on various benchmarks with respect to discriminability and transferability. The code implementation of our method is available at https://github.com/ByronJi/DRGCL.Comment: Accepted by AAAI202

    Differential expressed genes in ECV304 Endothelial-like Cells infected with Human Cytomegalovirus

    Get PDF
    Background: Human cytomegalovirus (HCMV) is a virus which has the potential to alter cellular gene expression through multiple mechanisms.Objective: With the application of DNA microarrays, we could monitor the effects of pathogens on host-cell gene expression programmes in great depth and on a broad scale.Methods: Changes in mRNA expression levels of human endothelial-like ECV304 cells following infection with human cytomegalovirus AD169 strain was analyzed by a microarray system comprising 21073 60-mer oligonucleotide probes which represent 18716 human genes or transcripts.Results: The results from cDNA microarray showed that there were 559 differential expressed genes consisted of 471 upregulated genes and 88 down-regulated genes. Real-time qPCR was performed to validate the expression of 6 selected genes (RPS24, MGC8721, SLC27A3, MST4, TRAF2 and LRRC28), and the results of which were consistent with those from the microarray. Among 237 biology processes, 39 biology processes were found to be related significantly to HCMV-infection. The signal transduction is the most significant biological process with the lowest p value (p=0.005) among all biological process which involved in response to HCMV infection.Conclusion: Several of these gene products might play key roles in virus-induced pathogenesis. These findings may help to elucidate the pathogenic mechanisms of HCMV caused diseases.Keywords: Human cytomegalovirus, microarray, Gene expression profiling; infectomicsAfrican Health Sciences 2013; 13(4): 864 - 87

    MetaMask: Revisiting Dimensional Confounder for Self-Supervised Learning

    Full text link
    As a successful approach to self-supervised learning, contrastive learning aims to learn invariant information shared among distortions of the input sample. While contrastive learning has yielded continuous advancements in sampling strategy and architecture design, it still remains two persistent defects: the interference of task-irrelevant information and sample inefficiency, which are related to the recurring existence of trivial constant solutions. From the perspective of dimensional analysis, we find out that the dimensional redundancy and dimensional confounder are the intrinsic issues behind the phenomena, and provide experimental evidence to support our viewpoint. We further propose a simple yet effective approach MetaMask, short for the dimensional Mask learned by Meta-learning, to learn representations against dimensional redundancy and confounder. MetaMask adopts the redundancy-reduction technique to tackle the dimensional redundancy issue and innovatively introduces a dimensional mask to reduce the gradient effects of specific dimensions containing the confounder, which is trained by employing a meta-learning paradigm with the objective of improving the performance of masked representations on a typical self-supervised task. We provide solid theoretical analyses to prove MetaMask can obtain tighter risk bounds for downstream classification compared to typical contrastive methods. Empirically, our method achieves state-of-the-art performance on various benchmarks.Comment: Accepted by NeurIPS 202

    Learning to Sample Tasks for Meta Learning

    Full text link
    Through experiments on various meta-learning methods, task samplers, and few-shot learning tasks, this paper arrives at three conclusions. Firstly, there are no universal task sampling strategies to guarantee the performance of meta-learning models. Secondly, task diversity can cause the models to either underfit or overfit during training. Lastly, the generalization performance of the models are influenced by task divergence, task entropy, and task difficulty. In response to these findings, we propose a novel task sampler called Adaptive Sampler (ASr). ASr is a plug-and-play task sampler that takes task divergence, task entropy, and task difficulty to sample tasks. To optimize ASr, we rethink and propose a simple and general meta-learning algorithm. Finally, a large number of empirical experiments demonstrate the effectiveness of the proposed ASr.Comment: 10 pages, 7 tables, 3 figure

    Unbiased Image Synthesis via Manifold-Driven Sampling in Diffusion Models

    Full text link
    Diffusion models are a potent class of generative models capable of producing high-quality images. However, they can face challenges related to data bias, favoring specific modes of data, especially when the training data does not accurately represent the true data distribution and exhibits skewed or imbalanced patterns. For instance, the CelebA dataset contains more female images than male images, leading to biased generation results and impacting downstream applications. To address this issue, we propose a novel method that leverages manifold guidance to mitigate data bias in diffusion models. Our key idea is to estimate the manifold of the training data using an unsupervised approach, and then use it to guide the sampling process of diffusion models. This encourages the generated images to be uniformly distributed on the data manifold without altering the model architecture or necessitating labels or retraining. Theoretical analysis and empirical evidence demonstrate the effectiveness of our method in improving the quality and unbiasedness of image generation compared to standard diffusion models
    corecore