26 research outputs found
The elicitor VP2 from Verticillium dahliae triggers defence response in cotton
Summary: Verticillium dahliae is a widespread and destructive soilborne vascular pathogenic fungus that causes serious diseases in dicot plants. Here, comparative transcriptome analysis showed that the number of genes upregulated in defoliating pathotype V991 was significantly higher than in the non‐defoliating pathotype 1cd3‐2 during the early response of cotton. Combined with analysis of the secretome during the V991–cotton interaction, an elicitor VP2 was identified, which was highly upregulated at the early stage of V991 invasion, but was barely expressed during the 1cd3‐2‐cotton interaction. Full‐length VP2 could induce cell death in several plant species, and which was dependent on NbBAK1 but not on NbSOBIR1 in N. benthamiana. Knock‐out of VP2 attenuated the pathogenicity of V991. Furthermore, overexpression of VP2 in cotton enhanced resistance to V. dahliae without causing abnormal plant growth and development. Several genes involved in JA, SA and lignin synthesis were significantly upregulated in VP2‐overexpressing cotton. The contents of JA, SA, and lignin were also significantly higher than in the wild‐type control. In summary, the identified elicitor VP2, recognized by the receptor in the plant membrane, triggers the cotton immune response and enhances disease resistance
Polyethyleneimine-coated MXene quantum dots improve cotton tolerance to Verticillium dahliae by maintaining ROS homeostasis
Verticillium dahliae is a soil-borne hemibiotrophic fungal pathogen that threatens cotton production worldwide. In this study, we assemble the genomes of two V. dahliae isolates: the more virulence and defoliating isolate V991 and nondefoliating isolate 1cd3-2. Transcriptome and comparative genomics analyses show that genes associated with pathogen virulence are mostly induced at the late stage of infection (Stage II), accompanied by a burst of reactive oxygen species (ROS), with upregulation of more genes involved in defense response in cotton. We identify the V991-specific virulence gene SP3 that is highly expressed during the infection Stage II. V. dahliae SP3 knock-out strain shows attenuated virulence and triggers less ROS production in cotton plants. To control the disease, we employ polyethyleneimine-coated MXene quantum dots (PEI-MQDs) that possess the ability to remove ROS. Cotton seedlings treated with PEI-MQDs are capable of maintaining ROS homeostasis with enhanced peroxidase, catalase, and glutathione peroxidase activities and exhibit improved tolerance to V. dahliae. These results suggest that V. dahliae trigger ROS production to promote infection and scavenging ROS is an effective way to manage this disease. This study reveals a virulence mechanism of V. dahliae and provides a means for V. dahliae resistance that benefits cotton production
Numerical Calculation Scheme of Neutronics-Thermal-Mechanical Coupling in Solid State Reactor Core Based on Galerkin Finite Element Method
It is of practical significance to study the multi-physical processes of solid state nuclear systems for device design, safety analysis, and operation guidance. This system generally includes three multi-physical processes: neutronics, heat transfer, and thermoelasticity. In order to analyze the multi-physical field behavior of solid state nuclear system, it is necessary to analyze the laws of neutron flux, temperature, stress, and other physical fields in the system. Aiming at this scientific goal, this paper has carried out three aspects of work: (1) Based on Galerkin’s finite element theory, the governing equations of neutronics, heat transfer, and thermoelasticity have been established; (2) a neutronics-thermal-mechanical multi-physical finite element analysis code was developed and verified based on benchmark examples and third-party software for multi-physical processes; (3) for a solid state nuclear system with a typical heat pipe cooled reactor configuration, based on the analysis code developed in this work, the neutronics-thermal-mechanical coupling analysis was carried out, and the physical field laws such as neutron flux, temperature, stress, etc., of the device under the steady-state operating conditions were obtained; and (4) finally, the calculation results are discussed and analyzed, and the focus and direction of the next work are clarified
The Identification Distinct Antiviral Factors Regulated Influenza Pandemic H1N1 Infection
Influenza pandemic with H1N1 (H1N1pdms) causes severe lung damage and “cytokine storm,” leading to higher mortality and global health emergencies in humans and animals. Explaining host antiviral molecular mechanisms in response to H1N1pdms is important for the development of novel therapies. In this study, we organised and analysed multimicroarray data for mouse lungs infected with different H1N1pdm and nonpandemic H1N1 strains. We found that H1N1pdms infection resulted in a large proportion of differentially expressed genes (DEGs) in the infected lungs compared with normal lungs, and the number of DEGs increased markedly with the time of infection. In addition, we found that different H1N1pdm strains induced similarly innate immune responses and the identified DEGs during H1N1pdms infection were functionally concentrated in defence response to virus, cytokine-mediated signalling pathway, regulation of innate immune response, and response to interferon. Moreover, comparing with nonpandemic H1N1, we identified ten distinct DEGs (AREG, CXCL13, GATM, GPR171, IFI35, IFI47, IFIT3, ORM1, RETNLA, and UBD), which were enriched in immune response and cell surface receptor signalling pathway as well as interacted with immune response-related dysregulated genes during H1N1pdms. Our discoveries will provide comprehensive insights into host responding to pandemic with influenza H1N1 and find broad-spectrum effective treatment
Recommended from our members
Sipuleucel-T and Androgen Receptor-Directed Therapy for Castration-Resistant Prostate Cancer: A Meta-Analysis
New treatments, such as sipuleucel-T and androgen receptor- (AR-) directed therapies (enzalutamide (Enz) and abiraterone acetate (AA)), have emerged and been approved for the management of castration-resistant prostate cancer (CRPC). There are still debates over their efficacy and clinical benefits. This meta-analysis aimed to investigate the efficacy and safety of sipuleucel-T and AR-directed therapies in patients with CRPC. RevMan 5.1 was used for pooled analysis and analysis of publication bias. Seven studies were included in the meta-analysis, with three studies in sipuleucel-T (totally 737 patients, 488 patients in treatment group, and 249 patients in placebo group) and four in AR-directed therapies (totally 5,199 patients, 3,015 patients in treatment group, and 2,184 patients in placebo group). Treatment with sipuleucel-T significantly improved overall survival in patients with CRPC and was not associated with increased risk of adverse event of grade ≥3 (p > 0.05). However, treatment with sipuleucel-T did not improve time-to-progression and reduction of prostate-specific antigen (PSA) level ≥50% was not significantly different from that with placebo. AR-directed therapies significantly improved overall survival in patients with CRPC and improved time-to-progression and reduction of PSA level ≥50%. AR-directed therapies did not increase risk of adverse event of grade ≥3 (p > 0.05)
Sipuleucel-T and Androgen Receptor-Directed Therapy for Castration-Resistant Prostate Cancer: A Meta-Analysis
New treatments, such as sipuleucel-T and androgen receptor-(AR-) directed therapies (enzalutamide (Enz) and abiraterone acetate (AA)), have emerged and been approved for the management of castration-resistant prostate cancer (CRPC). There are still debates over their efficacy and clinical benefits. This meta-analysis aimed to investigate the efficacy and safety of sipuleucel-T and ARdirected therapies in patients with CRPC. RevMan 5.1 was used for pooled analysis and analysis of publication bias. Seven studies were included in the meta-analysis, with three studies in sipuleucel-T (totally 737 patients, 488 patients in treatment group, and 249 patients in placebo group) and four in AR-directed therapies (totally 5,199 patients, 3,015 patients in treatment group, and 2,184 patients in placebo group). Treatment with sipuleucel-T significantly improved overall survival in patients with CRPC and was not associated with increased risk of adverse event of grade ≥3 ( > 0.05). However, treatment with sipuleucel-T did not improve time-to-progression and reduction of prostate-specific antigen (PSA) level ≥50% was not significantly different from that with placebo. AR-directed therapies significantly improved overall survival in patients with CRPC and improved time-to-progression and reduction of PSA level ≥50%. AR-directed therapies did not increase risk of adverse event of grade ≥3 ( > 0.05)
Sipuleucel-T and Androgen Receptor-Directed Therapy for Castration-Resistant Prostate Cancer: A Meta-Analysis
New treatments, such as sipuleucel-T and androgen receptor- (AR-) directed therapies (enzalutamide (Enz) and abiraterone acetate (AA)), have emerged and been approved for the management of castration-resistant prostate cancer (CRPC). There are still debates over their efficacy and clinical benefits. This meta-analysis aimed to investigate the efficacy and safety of sipuleucel-T and AR-directed therapies in patients with CRPC. RevMan 5.1 was used for pooled analysis and analysis of publication bias. Seven studies were included in the meta-analysis, with three studies in sipuleucel-T (totally 737 patients, 488 patients in treatment group, and 249 patients in placebo group) and four in AR-directed therapies (totally 5,199 patients, 3,015 patients in treatment group, and 2,184 patients in placebo group). Treatment with sipuleucel-T significantly improved overall survival in patients with CRPC and was not associated with increased risk of adverse event of grade ≥3 (p>0.05). However, treatment with sipuleucel-T did not improve time-to-progression and reduction of prostate-specific antigen (PSA) level ≥50% was not significantly different from that with placebo. AR-directed therapies significantly improved overall survival in patients with CRPC and improved time-to-progression and reduction of PSA level ≥50%. AR-directed therapies did not increase risk of adverse event of grade ≥3 (p>0.05)
Guizhi Fuling Capsule Exhibits Antidysmenorrhea Activity by Inhibition of Cyclooxygenase Activity
Guizhi Fuling capsule (GZFLc) is a modern preparation from traditional Chinese Medicine. Guizhi Fuling was first prescribed by Zhang Zhongjing almost two thousand years ago for the treatment of primary dysmenorrhea. It has also been used to treat uterine fibroids, dysfunctional uterine bleeding, and endometriosis. Although effective against dysmenorrhea clinically, there are limited information on the mechanism of its action. The major components responsible for the activity are not well defined. The aim of this study has been to elucidate a mechanism that may facilitate the development of a bioactivity-based assay for quality control during drug formulation and manufacturing. Using an oxytocin-induced mouse dysmenorrhea model, we showed that oral administration of GZFLc at 150 and 300 mg/kg, dosages relevant to clinic usages, significantly suppressed oxytocin-induced writhing response. The antidysmenorrhea effect was also demonstrated by a rotarod assay. We showed that GZFLc treatment significantly prolonged the hanging time of mice on the rotating rod. Histological studies showed that GZFLc treatment reduced lamina propria edema, while no effect on COX2 expression was detected. GZFLc instead exhibited direct inhibitory effect against COX2, a critical enzyme that catalyzes arachidonic acid conversion to prostaglandins. By HPLC profiling, we showed that paeoniflorin, paeonol, and cinnamaldehyde are the major components from the corresponding plants. At 5 and 10 mg/kg, both paeoniflorin and paeonol were active against induced dysmenorrhea. The study not only links GZFLc antidysmenorrhea activity to COX2 inhibition but also uncovers a mechanism of action by which an assay can be developed for bioefficacy evaluation of GZFLc
CPT1A mediates chemoresistance in human hypopharyngeal squamous cell carcinoma via ATG16L1-dependent cellular autophagy
Hypopharyngeal squamous cell carcinoma (HSCC) is a highly aggressive malignancy that constitutes approximately 95% of all hypopharyngeal carcinomas, and it carries a poor prognosis. The primary factor influencing the efficacy of anti-cancer drugs for this type of carcinoma is chemoresistance. Carnitine palmitoyltransferase 1A (CPT1A) has been associated with tumor progression in various cancers, including breast, gastric, lung, and prostate cancer. The inhibition or depletion of CPT1A can lead to apoptosis, curbing cancer cell proliferation and chemoresistance. However, the role of CPT1A in HSCC is not yet fully understood. In this study, we discovered that CPT1A is highly expressed in HSCC and is associated with an advanced T-stage and a poor 5-year survival rate among patients. Furthermore, the overexpression of CPT1A contributes to HSCC chemoresistance. Mechanistically, CPT1A can interact with the autophagy-related protein ATG16L1 and stimulate the succinylation of ATG16L1, which in turn drives autophagosome formation and autophagy. We also found that treatment with 3-methyladenine (3-MA) can reduce cisplatin resistance in HSCC cells that overexpress CPT1A. Our findings also showed that a CPT1A inhibitor significantly enhances cisplatin sensitivity both in vitro and in vivo. This study is the first to suggest that CPT1A has a regulatory role in autophagy and is linked to poor prognosis in HSCC patients. It presents novel insights into the roles of CPT1A in tumorigenesis and proposes that CPT1A could be a potential therapeutic target for HSCC treatment