65,350 research outputs found

    Phase diagram of two-species Bose-Einstein condensates in an optical lattice

    Full text link
    The exact macroscopic wave functions of two-species Bose-Einstein condensates in an optical lattice beyond the tight-binding approximation are studied by solving the coupled nonlinear Schrodinger equations. The phase diagram for superfluid and insulator phases of the condensates is determined analytically according to the macroscopic wave functions of the condensates, which are seen to be traveling matter waves.Comment: 13 pages, 2 figure

    Controllable Persistent Atom Current of Bose-Einstein Condensates in an Optical Lattice Ring

    Full text link
    In this paper the macroscopic quantum states of Bose-Einstein condensates in optical lattices is studied by solving the periodic Gross-Pitaevskii equation in one-dimensional geometry. It is shown that an exact solution seen to be a travelling wave of excited macroscopic quantum states resultes in a persistent atom current which can be controlled by adjusting of the barrier height of the optical periodic potential. A critical condition to generate the travelling wave is demonstrated and we moreover propose a practical experiment to realize the persistent atom current in a toroidal atom waveguide.Comment: 9 pages, 1 figure

    Superluminal Caustics of Close, Rapidly-Rotating Binary Microlenses

    Get PDF
    The two outer triangular caustics (regions of infinite magnification) of a close binary microlens move much faster than the components of the binary themselves, and can even exceed the speed of light. When ϵ>1\epsilon > 1, where ϵc\epsilon c is the caustic speed, the usual formalism for calculating the lens magnification breaks down. We develop a new formalism that makes use of the gravitational analog of the Li\'enard-Wiechert potential. We find that as the binary speeds up, the caustics undergo several related changes: First, their position in space drifts. Second, they rotate about their own axes so that they no longer have a cusp facing the binary center of mass. Third, they grow larger and dramatically so for ϵ>>1\epsilon >> 1. Fourth, they grow weaker roughly in proportion to their increasing size. Superluminal caustic-crossing events are probably not uncommon, but they are difficult to observe.Comment: 12 pages, 7 ps figures, submitted to Ap

    Origin of Mass. Mass and Mass-Energy Equation from Classical-Mechanics Solution

    Full text link
    We establish the classical wave equation for a particle formed of a massless oscillatory elementary charge generally also traveling, and the resulting electromagnetic waves, of a generally Doppler-effected angular frequency \w, in the vacuum in three dimensions. We obtain from the solutions the total energy of the particle wave to be \eng=\hbarc\w, 2\pi \hbarc being a function expressed in wave-medium parameters and identifiable as the Planck constant. In respect to the train of the waves as a whole traveling at the finite velocity of light cc, \eng=mc^2 represents thereby the translational kinetic energy of the wavetrain, m=\hbarc\w/c^2 being its inertial mass and thereby the inertial mass of the particle. Based on the solutions we also write down a set of semi-empirical equations for the particle's de Broglie wave parameters. From the standpoint of overall modern experimental indications we comment on the origin of mass implied by the solution.Comment: 13 pages, no figure. Augmented introductio

    Carbon Nanotubes in Helically Modulated Potentials

    Get PDF
    We calculate effects of an applied helically symmetric potential on the low energy electronic spectrum of a carbon nanotube in the continuum approximation. The spectrum depends on the strength of this potential and on a dimensionless geometrical parameter, P, which is the ratio of the circumference of the nanotube to the pitch of the helix. We find that the minimum band gap of a semiconducting nanotube is reduced by an arbitrarily weak helical potential, and for a given field strength there is an optimal P which produces the biggest change in the band gap. For metallic nanotubes the Fermi velocity is reduced by this potential and for strong fields two small gaps appear at the Fermi surface in addition to the gapless Dirac point. A simple model is developed to estimate the magnitude of the field strength and its effect on DNA-CNT complexes in an aqueous solution. We find that under typical experimental conditions the predicted effects of a helical potential are likely to be small and we discuss several methods for increasing the size of these effects.Comment: 12 pages, 10 figures. Accepted for publication in Physical Review B. Image quality reduced to comply with arxiv size limitation
    corecore