21 research outputs found

    Identification of the quantitative trait loci for grain rate in maize

    Get PDF
    Grain rate (GR) is a very important trait in maize (Zea mays L.) breeding program related to yield. To realize its genetic basis, a recombinant inbred line (RIL) population and different nitrogen (N) regimes were used to map the quantitative trait loci (QTLs) for GR in maize. As a result, two QTLs were identified under high N regime and could explain a total of 14.84% of phenotypic variance. Due to additive effect, the QTL on chromosome 6 could decrease 0.029 of GR, while the QTL on chromosome 9 could increase 0.0203 of GR. Under low N regime, one QTL was mapped on chromosome 6 and could account for 9.52% of phenotypic variance, and owning to additive effect, the QTL could make GR decrease by 0.0234. The result in comparison with previous studies showed that the three QTLs in this present study were new quantitative loci associated with GR in maize. These results were beneficial for understanding the genetic basis of GR in maize

    Benefit analysis and evaluation of virtual power plants considering electric vehicles

    No full text
    Under the background of increasingly serious environmental pollution, virtual power plants have become an effective way to solve environmental pollution due to the characteristics of integrating a large number of clean distributed energy generation. At the same time, electric vehicles with dual attributes of power supply and load bring opportunities for the further development of virtual power plants. In this paper, the ideal matter-element comprehensive benefit evaluation model of virtual power plants is constructed by constructing the index system and weighting model of virtual power plants considering electric vehicles. The virtual power plants connected with different proportion of electric vehicles are taken as an example analysis. The results of the example analysis show that the comprehensive benefit of virtual power plants is the highest when the proportion of electric vehicles access reaches 120%

    Identification of the quantitative trait loci for grain rate in maize

    No full text
    Grain rate (GR) is a very important trait in maize (Zea mays L.) breeding program related to yield. To realize its genetic basis, a recombinant inbred line (RIL) population and different nitrogen (N) regimes were used to map the quantitative trait loci (QTLs) for GR in maize. As a result, two QTLs were identified under high N regime and could explain a total of 14.84% of phenotypic variance. Due to additive effect, the QTL on chromosome 6 could decrease 0.029 of GR, while the QTL on chromosome 9 could increase 0.0203 of GR. Under low N regime, one QTL was mapped on chromosome 6 and could account for 9.52% of phenotypic variance, and owning to additive effect, theĀ  QTL could make GR decrease by 0.0234. The result in comparison with previous studies showed that the three QTLs in this present study were new quantitative loci associated with GR in maize. These results were beneficial forĀ  understanding the genetic basis of GR in maize.Key words: Maize (Zea mays L.), grain rate, quantitative trait locus, recombinant inbred line, nitrogen

    Ultrafast Charge Carrier Dynamics in InP/ZnSe/ZnS Core/Shell/Shell Quantum Dots

    No full text
    The excellent performance of InP/ZnSe/ZnS core/shell/shell quantum dots (CSS-QDs) in light-emitting diodes benefits from the introduction of a ZnSe midshell. Understanding the changes of ultrafast carrier dynamics caused by the ZnSe midshell is important for their optoelectronic applications. Herein, we have compared the ultrafast carrier dynamics in CSS-QDs and InP/ZnS core/shell QDs (CS-QDs) using femtosecond transient absorption spectroscopy. The results show that the ZnSe midshell intensifies the electron delocalization and prolongs the in-band relaxation time of electrons from 238 fs to 350 fs, and that of holes from hundreds of femtoseconds to 1.6 ps. We also found that the trapping time caused by deep defects increased from 25.6 ps to 76 ps, and there were significantly reduced defect emissions in CSS-QDs. Moreover, the ZnSe midshell leads to a significantly increased density of higher-energy hole states above the valence band-edge, which may reduce the probability of Auger recombination caused by the positive trion. This work enhances our understanding of the excellent performance of the CSS-QDs applied to light-emitting diodes, and is likely to be helpful for the further optimization and design of optoelectronic devices based on the CSS-QDs

    New Insights in Molecular Mechanisms in Antimicrobial Resistance and Strategies in Anti-Biofilms

    No full text
    This topical collection, entitled ā€œAntimicrobial resistance and anti-biofilmsā€, was first launched in the journal Antibiotics in November of 2020 [...
    corecore