5,696 research outputs found

    Density Operator Description of Atomic Ordered Spatial Modes in Cavity QED

    Full text link
    We present a quantum Monte-Carlo simulation for a pumped atom in a strong coupling cavity with dissipation, where two ordered spatial modes are formed for the atomic probability density, with the peaks distributed either only in the odd sites or only in the even ones of the lattice formed by the cavity field. A mixed state density operator model, which describes the coupling between different atomic spatial modes and the corresponding cavity field components, is proposed, which goes beyond the pure state interpretation. We develop a new decomposition treatment to derive the atomic spatial modes as well as the cavity field statistics from the simulation results for the steady state. With this treatment, we also investigate the dynamical process for the probabilities of the atomic spatial modes in the adiabatic limit. According to the analysis of the fitting error between the simulation results and the density operator model, the latter is a good description for the system

    Temperature dependence of circular DNA topological states

    Full text link
    Circular double stranded DNA has different topological states which are defined by their linking numbers. Equilibrium distribution of linking numbers can be obtained by closing a linear DNA into a circle by ligase. Using Monte Carlo simulation, we predict the temperature dependence of the linking number distribution of small circular DNAs. Our predictions are based on flexible defect excitations resulted from local melting or unstacking of DNA base pairs. We found that the reduced bending rigidity alone can lead to measurable changes of the variance of linking number distribution of short circular DNAs. If the defect is accompanied by local unwinding, the effect becomes much more prominent. The predictions can be easily investigated in experiments, providing a new method to study the micromechanics of sharply bent DNAs and the thermal stability of specific DNA sequences. Furthermore, the predictions are directly applicable to the studies of binding of DNA distorting proteins that can locally reduce DNA rigidity, form DNA kinks, or introduce local unwinding.Comment: 15 pages in preprint format, 4 figure

    On Reinforcement Learning for Full-length Game of StarCraft

    Full text link
    StarCraft II poses a grand challenge for reinforcement learning. The main difficulties of it include huge state and action space and a long-time horizon. In this paper, we investigate a hierarchical reinforcement learning approach for StarCraft II. The hierarchy involves two levels of abstraction. One is the macro-action automatically extracted from expert's trajectories, which reduces the action space in an order of magnitude yet remains effective. The other is a two-layer hierarchical architecture which is modular and easy to scale, enabling a curriculum transferring from simpler tasks to more complex tasks. The reinforcement training algorithm for this architecture is also investigated. On a 64x64 map and using restrictive units, we achieve a winning rate of more than 99\% against the difficulty level-1 built-in AI. Through the curriculum transfer learning algorithm and a mixture of combat model, we can achieve over 93\% winning rate of Protoss against the most difficult non-cheating built-in AI (level-7) of Terran, training within two days using a single machine with only 48 CPU cores and 8 K40 GPUs. It also shows strong generalization performance, when tested against never seen opponents including cheating levels built-in AI and all levels of Zerg and Protoss built-in AI. We hope this study could shed some light on the future research of large-scale reinforcement learning.Comment: Appeared in AAAI 201

    Design and research into the nonlinear main vibration spring in double-mass high energy vibration milling

    Get PDF
    Due to the shortcomings of one - mass vibration mill such as inefficiency, high energy consumption and big noise, a double - mass high energy vibration mill, in which transient high vibration intensity is produced, is investigated by applying the non - linear vibration theory. The nonlinear hard - feature variable-pitch spring i0s used in the main vibration system which has the characteristic of the stiffness that can be varied along with the dynamic load. In this way, the goals of operation stabilization and energy saving will be achieved. Results from the field test show that the efficiency is obviously improved, i.e. a 28% increase in the vibration intensity, 10% decrease in energy consumption and 4% decrease in noise. That verifies the correctness of the main vibration system construction. This system can be used by others as a reference design for this field

    Pressure induced superconductivity bordering a charge-density-wave state in NbTe4 with strong spinorbit coupling

    Full text link
    Transition-metal chalcogenides host various phases of matter, such as charge-density wave (CDW), superconductors, and topological insulators or semimetals. Superconductivity and its competition with CDW in low-dimensional compounds have attracted much interest and stimulated considerable research. Here we report pressure induced superconductivity in a strong spin-orbit (SO) coupled quasi-one-dimensional (1D) transition-metal chalcogenide NbTe4_4, which is a CDW material under ambient pressure. With increasing pressure, the CDW transition temperature is gradually suppressed, and superconducting transition, which is fingerprinted by a steep resistivity drop, emerges at pressures above 12.4 GPa. Under pressure pp = 69 GPa, zero resistance is detected with a transition temperature TcT_c = 2.2 K and an upper critical field Hc2H_{c2}= 2 T. We also find large magnetoresistance (MR) up to 102\% at low temperatures, which is a distinct feature differentiating NbTe4_4 from other conventional CDW materials.Comment: https://rdcu.be/LX8
    corecore