1,256 research outputs found

    Analytic properties of force-free jets in the Kerr spacetime -- III: uniform field solution

    Full text link
    The structure of steady axisymmetric force-free magnetosphere of a Kerr black hole (BH) is governed by a second-order partial differential equation of AϕA_\phi depending on two "free" functions Ω(Aϕ)\Omega(A_\phi) and I(Aϕ)I(A_\phi), where AϕA_\phi is the ϕ\phi component of the vector potential of the electromagnetic field, Ω\Omega is the angular velocity of the magnetic field lines and II is the poloidal electric current. In this paper, we investigate the solution uniqueness. Taking asymptotically uniform field as an example, analytic studies imply that there are infinitely many solutions approaching uniform field at infinity, while only a unique one is found in general relativistic magnetohydrodynamic simulations. To settle down the disagreement, we reinvestigate the structure of the governing equation and numerically solve it with given constraint condition and boundary condition. We find that the constraint condition (field lines smoothly crossing the light surface (LS)) and boundary conditions at horizon and at infinity are connected via radiation conditions at horizon and at infinity, rather than being independent. With appropriate constraint condition and boundary condition, we numerically solve the governing equation and find a unique solution. Contrary to naive expectation, our numerical solution yields a discontinuity in the angular velocity of the field lines and a current sheet along the last field line crossing the event horizon. We also briefly discuss the applicability of the perturbation approach to solving the governing equation

    Signatures of Self-Interacting Dark Matter in the Matter Power Spectrum and the CMB

    Full text link
    We consider a self-interacting dark matter model in which the massive dark photon mediating the self-interaction decays to light dark fermions to avoid over-closing the universe. We find that if the model is constrained to explain the dark matter halos inferred for spiral galaxies and galaxy clusters simultaneously, there is a strong indication that dark matter is produced asymmetrically in the early universe. It also implies the presence of dark radiation, late kinetic decoupling for dark matter, and a suppressed linear power spectrum due to dark acoustic damping. The Lyman-α\alpha forest power spectrum measurements put a strong upper limit on the damping scale and the model has little room to reduce the abundances of satellite galaxies. Future observations in the matter power spectrum and the CMB, in tandem with the impact of self-interactions in galactic halos, makes it possible to measure the gauge coupling and masses of the dark sector particles even when signals in conventional dark matter searches are absent.Comment: 5 pages, 7 figures, published version in PL

    Bituminous Coal Combustion with New Insights

    Get PDF
    As one of the most important primary energy, bituminous coal has been widely applied in many fields. The combustion studies of bituminous coal have attracted a lot of attention due to the releases of hazardous emissions. This work focuses on the investigation of combustion characteristics of Shenmu bituminous pulverized coal as a representative bituminous coal in China with a combined TG-MS-FTIR system by considering the effect of particle size, heating rate, and the total flow rate. The combustion products were accurately quantified by normalization and numerical analysis of MS results. The results indicate that the decrease of the particle size, heating rate, and the total flow rate result in lower ignition and burnout temperatures. The activation energy tends to be lower with smaller particle size, faster heating rate, and lower total flow rate. The MS and FTIR results demonstrate that lower concentrations of different products, such as NO, NO2, HCN, CH4, and SO2, were produced with smaller particle size, slower heating rate, and lower total flow rate. This work will guide to understand the combustion kinetics of pulverized coals and be beneficial to control the formation of pollutants

    CVD‐Made Spinels: Synthesis, Characterization and Applications for Clean Energy

    Get PDF
    To reduce emissions and protect environment from pollution caused by volatile organic compounds (VOCs) and CO, catalytic oxidation can be applied as an efficient and promising technique. This review provides a novel and facile strategy to synthesize spinel-type and non-spinel-type transition metal oxides (TMOs). Specifically, single (Co3O4, α-Fe2O3, Mn3O4, CuO, Cu2O and Cr2O3) and binary (Co3-xCuxO4, Co3-xMnxO4 and Co3-xFexO4) TMOs have been prepared using pulsed spray evaporation chemical vapor deposition approach (PSE-CVD). PSE-CVD offers several advantages over conventional methods, such as relatively low cost, simplicity and high throughput, which makes it a promising strategy. Moreover, the PSE delivery system allows using less stable precursors and permits improving the reproducibility of the film properties with tailored compositions. The above listed TMOs prepared by PSE-CVD were successfully tested as catalysts toward the complete oxidation of some real fuels such as CO, C2H2, C3H6, n-C4H8 and C2H6O as representatives of VOCs and industrial exhaust streams. The active TMOs explored in this review could be potential catalysts candidates in one of the research areas that are currently under scrutiny, as the battle for the future of energy and environment involves the generation and application of clean energy

    A Deterministic and Storable Single-Photon Source Based on Quantum Memory

    Get PDF
    A single photon source is realized with a cold atomic ensemble (87^{87}Rb atoms). In the experiment, single photons, which is initially stored in an atomic quantum memory generated by Raman scattering of a laser pulse, can be emitted deterministically at a time-delay in control. It is shown that production rate of single photons can be enhanced by a feedback circuit considerably while the single-photon quality is conserved. Thus our present single-photon source is well suitable for future large-scale realization of quantum communication and linear optical quantum computation

    Experimental preparation and verification of quantum money

    Full text link
    A quantum money scheme enables a trusted bank to provide untrusted users with verifiable quantum banknotes that cannot be forged. In this work, we report an experimental demonstration of the preparation and verification of unforgeable quantum banknotes. We employ a security analysis that takes experimental imperfections fully into account. We measure a total of 3.6×1063.6\times 10^6 states in one verification round, limiting the forging probability to 10710^{-7} based on the security analysis. Our results demonstrate the feasibility of preparing and verifying quantum banknotes using currently available experimental techniques.Comment: 12 pages, 4 figure
    corecore