1,323 research outputs found

    Adiabatic Connection for Strictly-Correlated Electrons

    Full text link
    Modern density functional theory (DFT) calculations employ the Kohn-Sham (KS) system of non-interacting electrons as a reference, with all complications buried in the exchange-correlation energy (Exc). The adiabatic connection formula gives an exact expression for Exc. We consider DFT calculations that instead employ a reference of strictly-correlated electrons. We define a "decorrelation energy" that relates this reference to the real system, and derive the corresponding adiabatic connection formula. We illustrate this theory in three situations, namely the uniform electron gas, Hooke's atom, and the stretched hydrogen molecule. The adiabatic connection for strictly-correlated electrons provides an alternative perspective for understanding density functional theory and constructing approximate functionals.Comment: 4 figures, has been published in J. Chem. Phy

    Reliable energy level alignment at physisorbed molecule-metal interfaces from density functional theory.

    Get PDF
    A key quantity for molecule-metal interfaces is the energy level alignment of molecular electronic states with the metallic Fermi level. We develop and apply an efficient theoretical method, based on density functional theory (DFT) that can yield quantitatively accurate energy level alignment information for physisorbed metal-molecule interfaces. The method builds on the "DFT+Σ" approach, grounded in many-body perturbation theory, which introduces an approximate electron self-energy that corrects the level alignment obtained from conventional DFT for missing exchange and correlation effects associated with the gas-phase molecule and substrate polarization. Here, we extend the DFT+Σ approach in two important ways: first, we employ optimally tuned range-separated hybrid functionals to compute the gas-phase term, rather than rely on GW or total energy differences as in prior work; second, we use a nonclassical DFT-determined image-charge plane of the metallic surface to compute the substrate polarization term, rather than the classical DFT-derived image plane used previously. We validate this new approach by a detailed comparison with experimental and theoretical reference data for several prototypical molecule-metal interfaces, where excellent agreement with experiment is achieved: benzene on graphite (0001), and 1,4-benzenediamine, Cu-phthalocyanine, and 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111). In particular, we show that the method correctly captures level alignment trends across chemical systems and that it retains its accuracy even for molecules for which conventional DFT suffers from severe self-interaction errors

    Comparative Study of Covalent and van der Waals CdS Quantum Dot Assemblies from Many-Body Perturbation Theory

    Full text link
    Quantum dot (QD) assemblies are nanostructured networks made from aggregates of QDs and feature improved charge and energy transfer efficiencies compared to discrete QDs. Using first-principles many-body perturbation theory, we systematically compare the electronic and optical properties of two types of CdS QD assemblies that have been experimentally investigated: QD gels, where individual QDs are covalently connected via di- or poly-sulfide bonds, and QD nanocrystals, where individual QDs are bound via van der Waals interactions. Our work illustrates how the electronic, excitonic, and optical properties evolve when discrete QDs are assembled into 1D, 2D, and 3D gels and nanocrystals, as well as how the one-body and many-body interactions in these systems impact the trends as the dimensionality of the assembly increases. Furthermore, our work reveals the crucial role of the covalent di- or poly-sulfide bonds in the localization of the excitons, which highlights the difference between QD gels and QD nanocrystals.Comment: 25 pages, 4 figure

    Accuracy of density functionals for molecular electronics: the Anderson junction

    Full text link
    The exact ground-state exchange-correlation functional of Kohn-Sham density functional theory yields the exact transmission through an Anderson junction at zero bias and temperature. The exact impurity charge susceptibility is used to construct the exact exchange-correlation potential. We analyze the successes and limitations of various types of approximations, including smooth and discontinuous functionals of the occupation, as well as symmetry-broken approaches.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    Adiabatic Connection in the Low-Density Limit

    Full text link
    In density functional theory (DFT), the exchange-correlation functional can be exactly expressed by the adiabatic connection integral. It has been noticed that as lambda goes to infinity, the lambda^(-1) term in the expansion of W(lambda) vanishes. We provide a simple but rigorous derivation to this exact condition in this work. We propose a simple parametric form for the integrand, satisfying this condition, and show that it is highly accurate for weakly-correlated two-electron systems.Comment: 4 pages, 2 figures, submitted to Phys. Rev.
    • …
    corecore