128 research outputs found

    A Deterministic and Storable Single-Photon Source Based on Quantum Memory

    Get PDF
    A single photon source is realized with a cold atomic ensemble (87^{87}Rb atoms). In the experiment, single photons, which is initially stored in an atomic quantum memory generated by Raman scattering of a laser pulse, can be emitted deterministically at a time-delay in control. It is shown that production rate of single photons can be enhanced by a feedback circuit considerably while the single-photon quality is conserved. Thus our present single-photon source is well suitable for future large-scale realization of quantum communication and linear optical quantum computation

    High speed self-testing quantum random number generation without detection loophole

    Full text link
    Quantum mechanics provides means of generating genuine randomness that is impossible with deterministic classical processes. Remarkably, the unpredictability of randomness can be certified in a self-testing manner that is independent of implementation devices. Here, we present an experimental demonstration of self-testing quantum random number generation based on an detection-loophole free Bell test with entangled photons. In the randomness analysis, without the assumption of independent identical distribution, we consider the worst case scenario that the adversary launches the most powerful attacks against quantum adversary. After considering statistical fluctuations and applying an 80 Gb ×\times 45.6 Mb Toeplitz matrix hashing, we achieve a final random bit rate of 114 bits/s, with a failure probability less than 10510^{-5}. Such self-testing random number generators mark a critical step towards realistic applications in cryptography and fundamental physics tests.Comment: 34 pages, 10 figure

    Quantum Memory with Optically Trapped Atoms

    Full text link
    We report the experimental demonstration of a quantum memory for collective atomic states in a far-detuned optical dipole trap. Generation of the collective atomic state is heralded by the detection of a Raman scattered photon and accompanied by storage in the ensemble of atoms. The optical dipole trap provides confinement for the atoms during the quantum storage while retaining the atomic coherence. We probe the quantum storage by cross-correlation of the photon pair arising from the Raman scattering and the retrieval of the atomic state stored in the memory. Non-classical correlations are observed for storage times up to 60 microseconds.Comment: 4 pages, 3 figure

    Simultaneous compression of the passively mode-locked pulsewidth and pulse train

    Get PDF
    Simultaneous compression of the passively mode-locked pulse width and pulse train have been achieved by using a plano-convex unstable resonator hybrided by a nonlinear Sagnac ring interferometer. The greater than 30 mJ single pulse energy of a lone oscillator and less than or equal to 10 ps pulsewidth have been obtained. Using this system, the LAGEOS and ETALON satellites' laser ranging have been performed successfully

    Memory-built-in quantum teleportation with photonic and atomic qubits

    Full text link
    The combination of quantum teleportation and quantum memory of photonic qubits is essential for future implementations of large-scale quantum communication and measurement-based quantum computation. Both steps have been achieved separately in many proof-of-principle experiments, but the demonstration of memory-built-in teleportation of photonic qubits remains an experimental challenge. Here, we demonstrate teleportation between photonic (flying) and atomic (stationary) qubits. In our experiment, an unknown polarization state of a single photon is teleported over 7 m onto a remote atomic qubit that also serves as a quantum memory. The teleported state can be stored and successfully read out for up to 8 micro-second. Besides being of fundamental interest, teleportation between photonic and atomic qubits with the direct inclusion of a readable quantum memory represents a step towards an efficient and scalable quantum network.Comment: 19 pages 3 figures 1 tabl

    Experimental demonstration of a BDCZ quantum repeater node

    Full text link
    Quantum communication is a method that offers efficient and secure ways for the exchange of information in a network. Large-scale quantum communication (of the order of 100 km) has been achieved; however, serious problems occur beyond this distance scale, mainly due to inevitable photon loss in the transmission channel. Quantum communication eventually fails when the probability of a dark count in the photon detectors becomes comparable to the probability that a photon is correctly detected. To overcome this problem, Briegel, D\"{u}r, Cirac and Zoller (BDCZ) introduced the concept of quantum repeaters, combining entanglement swapping and quantum memory to efficiently extend the achievable distances. Although entanglement swapping has been experimentally demonstrated, the implementation of BDCZ quantum repeaters has proved challenging owing to the difficulty of integrating a quantum memory. Here we realize entanglement swapping with storage and retrieval of light, a building block of the BDCZ quantum repeater. We follow a scheme that incorporates the strategy of BDCZ with atomic quantum memories. Two atomic ensembles, each originally entangled with a single emitted photon, are projected into an entangled state by performing a joint Bell state measurement on the two single photons after they have passed through a 300-m fibre-based communication channel. The entanglement is stored in the atomic ensembles and later verified by converting the atomic excitations into photons. Our method is intrinsically phase insensitive and establishes the essential element needed to realize quantum repeaters with stationary atomic qubits as quantum memories and flying photonic qubits as quantum messengers.Comment: 5 pages, 4 figure

    Experimental exploration of five-qubit quantum error correcting code with superconducting qubits

    Full text link
    Quantum error correction is an essential ingredient for universal quantum computing. Despite tremendous experimental efforts in the study of quantum error correction, to date, there has been no demonstration in the realisation of universal quantum error correcting code, with the subsequent verification of all key features including the identification of an arbitrary physical error, the capability for transversal manipulation of the logical state, and state decoding. To address this challenge, we experimentally realise the [ ⁣[5,1,3] ⁣][\![5,1,3]\!] code, the so-called smallest perfect code that permits corrections of generic single-qubit errors. In the experiment, having optimised the encoding circuit, we employ an array of superconducting qubits to realise the [ ⁣[5,1,3] ⁣][\![5,1,3]\!] code for several typical logical states including the magic state, an indispensable resource for realising non-Clifford gates. The encoded states are prepared with an average fidelity of 57.1(3)%57.1(3)\% while with a high fidelity of 98.6(1)%98.6(1)\% in the code space. Then, the arbitrary single-qubit errors introduced manually are identified by measuring the stabilizers. We further implement logical Pauli operations with a fidelity of 97.2(2)%97.2(2)\% within the code space. Finally, we realise the decoding circuit and recover the input state with an overall fidelity of 74.5(6)%74.5(6)\%, in total with 9292 gates. Our work demonstrates each key aspect of the [ ⁣[5,1,3] ⁣][\![5,1,3]\!] code and verifies the viability of experimental realization of quantum error correcting codes with superconducting qubits.Comment: 6 pages, 4 figures + Supplementary Material

    Domain wall brane in squared curvature gravity

    Full text link
    We suggest a thick braneworld model in the squared curvature gravity theory. Despite the appearance of higher order derivatives, the localization of gravity and various bulk matter fields is shown to be possible. The existence of the normalizable gravitational zero mode indicates that our four-dimensional gravity is reproduced. In order to localize the chiral fermions on the brane, two types of coupling between the fermions and the brane forming scalar is introduced. The first coupling leads us to a Schr\"odinger equation with a volcano potential, and the other a P\"oschl-Teller potential. In both cases, the zero mode exists only for the left-hand fermions. Several massive KK states of the fermions can be trapped on the brane, either as resonant states or as bound states.Comment: 18 pages, 5 figures and 1 table, references added, improved version to be published in JHE

    A millisecond quantum memory for scalable quantum networks

    Full text link
    Scalable quantum information processing critically depends on the capability of storage of a quantum state. In particular, a long-lived storable and retrievable quantum memory for single excitations is of crucial importance to the atomic-ensemble-based long-distance quantum communication. Although atomic memories for classical lights and continuous variables have been demonstrated with milliseconds storage time, there is no equal advance in the development of quantum memory for single excitations, where only around 10 μ\mus storage time was achieved. Here we report our experimental investigations on extending the storage time of quantum memory for single excitations. We isolate and identify distinct mechanisms for the decoherence of spin wave (SW) in atomic ensemble quantum memories. By exploiting the magnetic field insensitive state, ``clock state", and generating a long-wavelength SW to suppress the dephasing, we succeed in extending the storage time of the quantum memory to 1 ms. Our result represents a substantial progress towards long-distance quantum communication and enables a realistic avenue for large-scale quantum information processing.Comment: 11pages, 4 figures, submitted for publicatio
    corecore