2,474 research outputs found

    Changes of Kondo effect in the junction with DIII-class topological and ss-wave superconductors

    Full text link
    We discuss the change of the Kondo effect in the Josephson junction formed by the indirect coupling between a one-dimensional \emph{DIII}-class topological and s-wave superconductors via a quantum dot. By performing the Schrieffer-Wolff transformation, we find that the single-electron occupation in the quantum dot induces various correlation modes, such as the Kondo and singlet-triplet correlations between the quantum dot and the ss-wave superconductor and the spin exchange correlation between the dot and Majorana doublet. Moreover, it plays a nontrivial role in modifying the Josephson effect, leading to the occurrence of anisotropic and high-order Kondo correlation. In addition, due to the quantum dot in the Kondo regime, extra spin exchange correlations contribute to the Josephson effect as well. Nevertheless, if the \emph{DIII}-class topological superconductor degenerates into \emph{D}-class because of the destruction of time-reversal invariance, all such terms will disappear completely. We believe that this work shows the fundamental difference between the \emph{D}- and \emph{DIII}-class topological superconductors.Comment: 10 pages, 3 figures. Any comment is welcom

    Semantic Graph for Zero-Shot Learning

    Full text link
    Zero-shot learning aims to classify visual objects without any training data via knowledge transfer between seen and unseen classes. This is typically achieved by exploring a semantic embedding space where the seen and unseen classes can be related. Previous works differ in what embedding space is used and how different classes and a test image can be related. In this paper, we utilize the annotation-free semantic word space for the former and focus on solving the latter issue of modeling relatedness. Specifically, in contrast to previous work which ignores the semantic relationships between seen classes and focus merely on those between seen and unseen classes, in this paper a novel approach based on a semantic graph is proposed to represent the relationships between all the seen and unseen class in a semantic word space. Based on this semantic graph, we design a special absorbing Markov chain process, in which each unseen class is viewed as an absorbing state. After incorporating one test image into the semantic graph, the absorbing probabilities from the test data to each unseen class can be effectively computed; and zero-shot classification can be achieved by finding the class label with the highest absorbing probability. The proposed model has a closed-form solution which is linear with respect to the number of test images. We demonstrate the effectiveness and computational efficiency of the proposed method over the state-of-the-arts on the AwA (animals with attributes) dataset.Comment: 9 pages, 5 figure

    Nonlocal theory solution of two collinear cracks in the functionally graded materials

    Get PDF
    AbstractIn this paper, the interaction of two collinear cracks in functionally graded materials subjected to a uniform anti-plane shear loading is investigated by means of nonlocal theory. The traditional concepts of the nonlocal theory are extended to solve the fracture problem of functionally graded materials. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with the coordinate vertical to the crack. By use of the Fourier transform, the problem can be solved with the help of a pair of triple integral equations, in which the unknown variable is the displacement on the crack surfaces. To solve the triple integral equations, the displacement on the crack surfaces is expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present near the crack tips. The nonlocal elastic solutions yield a finite hoop stress at the crack tip, thus allowing us to use the maximum stress as a fracture criterion in functionally graded materials. The magnitude of the finite stress field depends on the crack length, the distance between two cracks, the parameter describing the functionally graded materials and the lattice parameter of the materials
    corecore