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Abstract

In this paper, the interaction of two collinear cracks in functionally graded materials subjected to a uniform anti-
plane shear loading is investigated by means of nonlocal theory. The traditional concepts of the nonlocal theory are
extended to solve the fracture problem of functionally graded materials. To make the analysis tractable, it is assumed
that the shear modulus varies exponentially with the coordinate vertical to the crack. By use of the Fourier transform,
the problem can be solved with the help of a pair of triple integral equations, in which the unknown variable is the
displacement on the crack surfaces. To solve the triple integral equations, the displacement on the crack surfaces is
expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity
is present near the crack tips. The nonlocal elastic solutions yield a finite hoop stress at the crack tip, thus allowing us to
use the maximum stress as a fracture criterion in functionally graded materials. The magnitude of the finite stress field
depends on the crack length, the distance between two cracks, the parameter describing the functionally graded mate-
rials and the lattice parameter of the materials.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) have been widely introduced and applied to the development of
thermal and structural components due to its ability to not only reduce the residual and thermal stresses but
to increase the bonding strength and toughness as well. To help the development of such materials, many
analytical and theoretical studies in fracture mechanics have been widely done. In an attempt to address the
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issues pertaining to the fracture analysis of bonded media with such transitional interfacial properties, a
series of solutions to certain crack problems was obtained by Erdogan and his associates (Erdogan and
Wu, 1997; Delale and Erdogan, 1988; Chen, 1990; Ozturk and Erdogan, 1996). Among them there are
the solutions for a FGM strip containing an imbedded or an edge crack perpendicular to the surfaces
(Erdogan and Wu, 1997); for a crack in the nonhomogeneous interlayer bounded by dissimilar homoge-
neous media (Delale and Erdogan, 1988); and for a crack at the interface between homogeneous and non-
homogeneous materials (Chen, 1990; Ozturk and Erdogan, 1996). Similar problems of delamination or an
interface crack between a functionally graded coating and a substrate were considered in Jin and Batra
(1996), Bao and Cai (1997) and Shbeeb and Binienda (1999). The crack problem in FGM layers under ther-
mal stresses was studied by Erdogan and Wu (1996). They considered an unconstrained elastic layer under
statically self-equilibrating thermal or residual stresses. However, it is found that all the solutions in Erdo-
gan and Wu (1997), Delale and Erdogan (1988), Chen (1990), Ozturk and Erdogan (1996), Jin and Batra
(1996), Bao and Cai (1997), Shbeeb and Binienda (1999) and Erdogan and Wu (1996) contain the stress
singularity near the crack tips. This phenomenon is not reasonable according to the physical nature. As
a result of this, beginning with Griffith, all fracture criteria in practice today are based on other consider-
ations, e.g. energy, the J-integral (Rice, 1968) and the strain gradient theory (Xia and Hutchinson, 1996).

To overcome the stress singularity in the classical elastic fracture theory, Eringen (Eringen et al., 1977;
Eringen, 1978, 1979) used nonlocal theory to discuss the stress near the tip of a sharp line crack in an iso-
tropic elastic plate subject to uniform tension, shear and anti-plane shear, and the resulting solutions did
not contain any stress singularities. This allows us to use the maximum stress as a fracture criterion. In con-
trast to these local approaches of zero-range internal interactions, the modern nonlocal continuum mechan-
ics originated and developed in the last four decades. Edelen (1976), Eringen (1976), Green and Rivilin
(1965) postulate that the local state at a point is influenced by the action of all particles of the body.
According to nonlocal theory, the stress at a point X in a body depends not only on the strain at point
X but also on that at all other points of the body. This is contrary to the classical theory that the stress
at a point X in a body depends only on the strain at point X. In Pan and Takeda (1998), the basic theory
of nonlocal elasticity was stated with emphasis on the difference between the nonlocal theory and classical
continuum mechanics. The basic idea of nonlocal elasticity is to build a relationship between macroscopic
mechanical quantities and microscopic physical quantities within the framework of continuum mechanics.
The constitutive theory of nonlocal elasticity has been developed in Edelen (1976), in which the elastic mod-
ulus is influenced by the microstructure of the material. In Pan and Xing (1997) and Pan and Takeda
(1997), it has been found that the microstructure of the material not only affects the constitutive equation,
but also the basic balance laws and boundary conditions. Other results have been given by the application
of nonlocal elasticity to the fields such as a dislocation near a crack (Pan, 1992, 1994), solid defects (Pan,
1996; Pan and Fang, 1996) and fracture mechanics problems (Pan, 1995; Pan and Fang, 1993). The liter-
ature on the fundamental aspects of nonlocal continuum mechanics is relatively extensive. The results of
those concrete problems that were solved display a rather remarkable agreement with experimental evi-
dence. This can be used to predict the cohesive stress for various materials and the results close to those
obtained in atomic lattice dynamics (Eringen and Kim, 1974, 1977). Likewise, a nonlocal study of the sec-
ondary flow of viscous fluid in a pipe furnishes a streamline pattern similar to that obtained experimentally
by Nikuradze (Eringen, 1977). Other examples of the effectiveness of the nonlocal approach are: (i) predic-
tion of the dispersive character of elastic waves demonstrated experimentally (and lacking in the classical
theory) (Eringen, 1972) and (ii) calculation of the velocity of short Love waves whose nonlocal estimates
agree better with seismological observations than the local ones (Nowinski, 1984). Several nonlocal theories
have been formulated to address strain-gradient and size effects (Forest, 1998). Recently, some fracture
problems (Zhou et al., 1999, 2003; Zhou and Shen, 1999; Zhou and Wang, 2003; Sun and Zhou, 2004)
in an isotropic elastic material and the piezoelectric material have been studied by use of nonlocal theory
with a somewhat different method. However, relatively few works have been made for the fracture analysis
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by nonlocal theory in functionally graded materials due to the mathematical complexities. To our knowl-
edge, the interaction of two collinear cracks in functionally graded materials has not been studied by use of
the nonlocal theory. Thus, the present work is an attempt to fill this needed information. Here, we just at-
tempt to give a theoretical solution for this problem.

In the present paper, the interaction of two collinear cracks subjected to anti-plane shear loading is
investigated by use of nonlocal theory in functionally graded materials with Schmidt method (Morse
and Feshbach, 1958; Itou, 1978; Yan, 1967). The Fourier transform is applied and a mixed boundary value
problem is reduced to a pair of triple integral equations. To solve the triple integral equations, the displace-
ment on the crack surfaces is expanded in a series of Jacobi polynomials. This process is quite different from
those adopted in Erdogan and Wu (1997), Delale and Erdogan (1988), Chen (1990), Ozturk and Erdogan
(1996), Jin and Batra (1996), Bao and Cai (1997), Shbeeb and Binienda (1999) and Erdogan and Wu (1996)
as mentioned above. Numerical solutions are obtained for the stress field near the crack tip. Contrary to the
previous results, it is found that the solution does not contain any stress singularities near the crack tip.
2. Basic equations of nonlocal theory

Basic equations of two-dimensional anti-plane shear plane of functionally graded materials, nonlocal
elastic solid, with vanishing body force are
osxz
ox

þ osyz
oy

¼ 0 ð1Þ

sxzðx; yÞ ¼
Z 1

�1

Z 1

�1
l�ðjx0 � xj; jy0 � yjÞ owðx

0; y0Þ
ox0

dx0 dy 0 ð2Þ

syzðx; yÞ ¼
Z 1

�1

Z 1

�1
l�ðjx0 � xj; jy 0 � yjÞ owðx

0; y 0Þ
oy0

dx0 dy0 ð3Þ
where w(x,y) is the out-of-plane displacement. The only difference from the classical elasticity is in the stress
constitutive equations (2) and (3), the stress sxz and syz, at a point (x,y) depend on the owðx;yÞ

ox and owðx;yÞ
oy , at all

points of the body. For the nonhomogeneous materials, anti-plane shear problem there exits only a mate-

rials parameter l*(jx 0 � xj, jy 0 � yj), which is a function of the distance d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � xÞ2 þ ðy 0 � yÞ2

q
. In the

papers of Eringen and Kim (1974, 1977) and Eringen (1977), we obtained the form of l*(jx 0 � xj, jy 0 � yj)
for which the dispersion curves of plane elastic waves coincide with those known in lattice dynamics.
Among several possible curves the following has been found to be very useful
l�ðjx0 � xj; jy 0 � yjÞ ¼ aðjx0 � xj; jy0 � yjÞlðy0Þ ð4Þ

aðjx0 � xj; jy0 � yjÞ ¼ a0 expf�ðb=aÞ2½ðx0 � xÞ2 þ ðy0 � yÞ2�g ð5Þ

where a(jx 0 � xj, jy 0 � yj) is known as the influence function. b is a constant and can be obtained by an
experiment. a is the characteristic length. The characteristic length may be selected according to the range
and sensitivity of the physical phenomena. For instance, for the perfect crystals, a may be taken as the lat-
tice parameter. For granular materials, a may be considered to be the average granular distance and for
fiber composites, the fiber distance, etc. In the present paper, a is taken as the lattice parameter. l(y) is
the functionally graded material constant of the classical elasticity. a0 is determined by the normalization
Z 1

�1

Z 1

�1
aðjx0 � xj; jy 0 � yjÞdx0 dy0 ¼ 1 ð6Þ
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In the present work, we employ nonlocal elastic moduli given by Eqs. (4) and (5). Substituting Eqs. (4) and
(5) into Eq. (6), it can be obtained, in a two-dimensional space
a0 ¼
1

p
ðb=aÞ2 ð7Þ
Crack problems in the functionally graded materials do not appear to be analytically tractable for arbitrary
variations of material properties. Usually, one tries to generate the forms of nonhomogeneities for which
the problem becomes tractable. Similar to the treatment of the crack problem for isotropic nonhomogene-
ous materials in Erdogan and Wu (1997), Delale and Erdogan (1988), Chen (1990) and Ozturk and Erdo-
gan (1996), we assume the material properties are described by
lðyÞ ¼ l0e
ky ð8Þ
where l0 is the shear modulus of the functionally graded materials along y = 0.
Substituting Eqs. (2) and (3) into Eq. (1) and using Green–Gauss theorem leads to
Z

�1

1 Z 1

�1
aðjx0 � xj; jy0 � yjÞlðy0Þ o2wðx0; y 0Þ

ox02
þ o2wðx0; y0Þ

oy02
þ k

owðx0; y0Þ
oy0

� �
dx0 dy0

�
Z �b

�1

þ
Z 1

b

� �
aðjx0 � xj; jy0 � yjÞ½ryzðx0; 0þÞ � ryzðx0; 0�Þ�dx0 ¼ 0 ð9Þ
where ryzðx; yÞ ¼ lðyÞ owðx;yÞ
oy . This expression is the classical Hooke�s law. Here the surface integral may be

dropped since the displacement field vanishes at infinity. 1 � b is the length of the crack as mentioned
below.
3. The crack model

It is assumed that there are two collinear symmetric cracks of length 1 � b along the x-axis in function-
ally graded material plane as shown in Fig. 1. 2b is the distance between the two cracks (The solution of two
collinear cracks of length c � b in the piezoelectric materials can easily be obtained by a simple change in
the numerical values of the present paper for crack length 1 � b/c. c > b > 0.). The plate is subjected to a
uniform constant anti-plane shear stress syz = �s0 (s0 is a magnitude of the uniform anti-plane shear stress
loading.) along the surfaces of the crack. As discussed in Eringen (1979), the boundary conditions can be
written as follows:
syzðx; 0þÞ ¼ syzðx; 0�Þ ¼ �s0; b 6 jxj 6 1; y ¼ 0 ð10Þ

wðx; 0þÞ ¼ wðx; 0�Þ ¼ 0; jxj > 1; jxj < b; y ¼ 0 ð11Þ
Fig. 1. Geometry and coordinate system for two collinear cracks.
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4. The triple integral equation

As mentioned in Eringen (1979), it can be obtained that [ryz(x, 0
+) � ryz(x, 0

�)] = 0. So it can be shown
that the general solution of (9) is identical to that of
o2wðx; yÞ
ox2

þ k
owðx; yÞ

oy
þ o2wðx; yÞ

oy2
¼ 0 ð12Þ
almost everywhere.
Because of the symmetry, it suffices to consider the problem for x P 0, jyj < 1.
Eq. (12) can be solved giving
wðx; yÞ ¼
2
p

R1
0

AðsÞe�cy cosðsxÞds; y P 0

� 2
p

R1
0

AðsÞecy cosðsxÞds; y 6 0

(
ð13Þ
where A(s) is an unknown function and c ¼ kþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4s2

p
2

.
Substituting (13) into (3), it can be obtained
syzðx; yÞ ¼ � 2l0

p

Z 1

0

cAðsÞds
Z 1

0

e�ðc�kÞy0dy0
Z 1

�1
½aðjx0 � xj; jy0 � yjÞ þ aðjx0 � xj; jy0 þ yjÞ�

� cosðsx0Þdx0 ð14Þ
Substituting for a from (5), the integrations may be performed with respect to x 0 and y 0 by noting the inte-
grals (Gradshteyn and Ryzhik, 1980)
Z 1

�1
expð�px02Þ

sin nðx0 þ xÞ
cos nðx0 þ xÞ

� �
dx0 ¼ ðp=pÞ1=2 exp � n2

4p

� �
sinðnxÞ
cosðnxÞ

� �
ð15Þ

Z 1

0

expð�py2 � cyÞdy ¼ 1

2
ðp=pÞ1=2 expðc2=4pÞ½1� Uðc=2 ffiffiffi

p
p Þ� ð16Þ

UðzÞ ¼ 2ffiffiffi
p

p
Z z

0

expð�t2Þdt ð17Þ
Hence
syzðx; yÞ ¼ � l0

p

Z 1

0

cgðs; yÞAðsÞ cosðsxÞds ð18Þ
where
gðs; yÞ ¼ e�py2 e�
s2�ðc�2py�kÞ2

4p 1� U
c� 2py � k

2
ffiffiffi
p

p
� �� �

þ e�
s2�ðcþ2py�kÞ2

4p 1� U
cþ 2py � k

2
ffiffiffi
p

p
� �� �� �

; p ¼ b
a

� �2

.

So the boundary conditions (10) and (11) can be expressed as
syzðx; 0Þ ¼ � 2l0

p

Z 1

0

cg0ðsÞAðsÞ cosðsxÞds ¼ �s0; b 6 x 6 1 ð19Þ

Z 1

0

AðsÞ cosðsxÞds ¼ 0; x > 1; x < b ð20Þ
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where
g0ðsÞ ¼ e�
s2�ðc�kÞ2

4p 1� U
c� k
2
ffiffiffi
p

p
� �� �
It can be obtained that Lima!0g0(s) = 1. So Eqs. (19) and (20) will revert to the well-known triple inte-
gral equations of the classical theory for the limit a ! 0. To determine the unknown function A(s), the pre-
vious pair of triple integral equations (19) and (20) must be solved.
5. Solution of the triple integral equation

The only difference between the classical and nonlocal equations is in the influence function g0(s), it is
logical to utilize the classical solution to convert the system Eqs. (19) and (20) to an integral equation of
the second kind, which is generally better behaved. For the lattice parameter a ! 0, then g0(s) equals to
a nonzero constant and Eqs. (19) and (20) reduce to a pair of triple integral equations for the same problem
in classical elasticity. As discussed in Eringen et al. (1977), the triple integral equations (19) and (20) cannot
be transformed into a Fredholm integral equation of the second kind, because g0(s) does not tend to a con-
stant C (C5 0) for s ! 1. Of course, the triple equations (19) and (20) can be considered to be a single
integral equation of the first kind with discontinuous kernel. It is well-known in the literature that integral
equations of the first kind are generally ill-posed in sense of Hadamard, i.e. small perturbations of the data
can yield arbitrarily large changes in the solution. This makes the numerical solution of such equations
quite difficult. To overcome the difficulty, the Schmidt method (Morse and Feshbach, 1958; Yan, 1967)
is used to solve the triple integral equations (19) and (20). The displacement w on the crack surface can
be represented by the following series:
wðx; 0Þ ¼
X1
n¼0

bnP
1
2;
1
2ð Þ

n
x� 1þb

2
1�b
2

 !
1�

x� 1þb
2

� 	2
1�b
2

� 	2
 !1

2

; for b 6 x 6 1 ð21Þ

wðx; 0Þ ¼ 0; for x > 1; 0 < x < b ð22Þ

where an are unknown coefficients,P ð1=2;1=2Þ

n ðxÞ is a Jacobi polynomial (Gradshteyn and Ryzhik, 1980).
The Fourier transform of (21) and (22) are (Erdelyi, 1954)
AðsÞ ¼ �wðs; 0Þ ¼
X1
n¼0

bnF nGnðsÞ
1

s
Jnþ1 s

1� b
2

� �
ð23Þ

F n ¼ 2
ffiffiffi
p

p C nþ 1þ 1
2

� 	
n!

; GnðsÞ ¼
ð�1Þ

n
2 cos s 1þb

2

� 	
; n ¼ 0; 2; 4; 6; . . .

ð�1Þ
nþ1
2 sin s 1þb

2

� 	
; n ¼ 1; 3; 5; 7; . . .

(
ð24Þ
where C(x) and Jn(x) are the Gamma and Bessel functions, respectively. A superposed bar indicates the
Fourier cosine transform through the paper. The Fourier cosine transform is defined as follows:
�f ðsÞ ¼
Z 1

0

f ðxÞ cosðsxÞdx; f ðxÞ ¼ 2

p

Z 1

0

�f ðsÞ cosðsxÞds
Substituting (23) into Eqs. (19) and (20), it can be shown that Eq. (20) is automatically satisfied. Eq. (19)
reduces to
2l0

p

X1
n¼0

anF n

Z 1

0

c
s
g0ðsÞGnðsÞJnþ1 s

1� b
2

� �
cosðsxÞds ¼ s0; b 6 x 6 1 ð25Þ
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From the relation
1� UðzÞ ¼ e�z2ffiffiffi
p

p
z

1þ
X1
k¼1

ð�1Þk ð2k � 1Þ!!
ð2z2Þk

" #
it can be obtained that
e�
s2�ðc�kÞ2

4p 1� U
c� k
2
ffiffiffi
p

p
� �� �

¼
2
ffiffiffi
p

p
e�

s2
4pffiffiffi

p
p

ðc� kÞ 1þ
X1
k¼1

ð�1Þk ð2k � 1Þ!!

2 c�k
2
ffiffi
p

p

 �2� �k

2
6664

3
7775 ð26Þ
The semi-infinite integral in Eq. (25) can be numerically evaluated directly by use of Eq. (26). So the semi-
infinite integral in Eq. (25) can be evaluated numerically by Filon�s method (Amemiya and Taguchi, 1969).
Thus Eq. (25) can be solved for coefficients an by the Schmidt method (Morse and Feshbach, 1958; Yan,
1967). Here, it was omitted. But can be seen in Zhou et al. (1999, 2003), Zhou and Shen (1999) and Zhou
and Wang (2003).
6. Numerical calculations and discussion

The coefficients an are known, so that the entire stress field can be obtained. However, in fracture
mechanics, it is important to determine the stress syz in the vicinity of the crack tips. In the case of the pres-
ent study, syz along the crack line can be expressed as
syzðx; 0Þ ¼ � 2l0

p

X1
n¼0

anF n

Z 1

0

c
s
g0ðsÞGnðsÞJnþ1 s

1� b
2

� �
cosðsxÞds ð27Þ
When the lattice parameter a 5 0, the semi-infinite integration and the series in Eq. (27) are convergent for
any variable x, it gives a finite stress all along y = 0, so there is no stress singularity at crack tips. At
b < x < 1, syz/(�s0) is very close to unity, and for x > 1, syz/(�s0) possesses finite values diminishing from
a finite value at x = 1 to zero at x =1. Since a/bl > 1/100 represents a crack length of less than 100 atomic
distances (Eringen et al., 1977), and for such submicroscopic sizes, other serious questions arise regarding
the interatomic arrangements and force laws, we do not pursue solutions valid at such small crack sizes.
The semi-infinite numerical integrals, which occur, are evaluated easily by Filon and Simpson�s (Amemiya
and Taguchi, 1969) methods because of the rapid diminution of the integrands. From Zhou et al. (1999,
2003), Zhou and Shen (1999), Zhou and Wang (2003) and Itou (2001), it can be seen that the Schmidt
method is performed satisfactorily if the first ten terms of infinite series to Eq. (27) are retained.

The results are plotted in Figs. 2–7. The following observations are very significant:

(i) In the present paper, the traditional concepts of the nonlocal theory are extended to solve the fracture
problem of functionally graded materials. The effects of the functionally graded parameter and the
lattice parameter of the functionally graded materials upon the stress fields near the crack tip are con-
sidered by use of the nonlocal theory.

(ii) The nonlocal elastic solutions in functionally graded materials yield a finite hoop stress at the crack
tip, thus allowing us to use maximum stress as a fracture criterion for the functionally graded mate-
rials. The maximum stress value does not occur at the crack tip, but slightly away from it as shown in
Figs. 2–4. This phenomenon has been thoroughly substantiated by Eringen (1983). The distance
between the crack tip and the maximum stress point is very small, and it depends on the crack length,
the material properties and the lattice parameter. Contrary to the classical elasticity solution, it is
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Fig. 2. The stress along the crack line versus x for b = 0.1, a/b = 0.001 and k = 0.2.
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Fig. 6. The stress at the crack tip versus k for b = 0.1 and a/b = 0.001.
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found that the present results converge to the classical ones when far away from the crack tip as
shown in Figs. 2–4. Simultaneously, for the nonlocal solution, the smaller the lattice parameter is,
the more closer to the classical solution as shown in Figs. 2–4. This conclusion is the same as one
in Eringen et al. (1977) and Eringen (1978, 1979) for the homogeneous materials.

(iii) The stress of syz does not depend on the shear modulus l0 as shown in Eqs. (25) and (27). However,
the stress of syz depends on the crack length, the parameter describing the functionally graded mate-
rials and the lattice parameter of the functionally graded materials. This is the same as the anti-plane
shear fracture problem in the isotropic homogeneous materials as shown in Eringen (1979).

(iv) The stress at the crack tip becomes infinite as the lattice parameter distance a ! 0. This is the classical
continuum limit of square root singularity.

(v) The effect of the lattice parameter of the functionally graded materials on the stress field near the
crack tips decreases with increase of the lattice parameter as shown in Fig. 5. This phenomenon is
the same as one in Eringen (1979).

(vi) The effect of the parameter describing the functionally graded materials on the stress field near the
crack tip decreases with increase of the parameter describing the functionally graded materials as
shown in Fig. 6. This means that, by decreasing the gradient parameter of FGMs, the stress fields near
the crack tips can be reduced.

(vii) The value of the stress syz at the crack tip increases with increase of the crack length as shown in Fig.
7, i.e., the interaction of two collinear cracks increases with decrease of distance between two cracks.
It can also be obtained that the crack left tip�s stress fields are greater than the crack right tip�s ones
for the right crack as shown in Figs. 2–4 and 7.

(viii) The stress concentration occurs at the crack tips as stated by Eringen (1978, 1979), and this is given by
syzð1; 0Þ=s0 ¼ cR=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=½2bð1� bÞ�

p
ð28Þ

syzðb; 0Þ=s0 ¼ cL=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=½2bð1� bÞ�

p
ð29Þ
where cR and cL represent the stress concentration values at the right tip and at the left tip for the
right crack for the stress syz, respectively. The cL is about equal to cL � 0.2179 for b = 0.1,
cL � 0.1906 for b = 0.2, cL � 0.1799 for b = 0.3, cL � 0.1742 for b = 0.4, cL � 0.1700 for b = 0.5,
respectively. The cR is about equal to cR � 0.1664 for b = 0.1, cR � 0.1613 for b = 0.2, cR � 0.1579
for b = 0.3, cR � 0.1543 for b = 0.4, cR � 0.1511 for b = 0.5, respectively. Here, the parameter
describing the functionally graded materials k is equal to 0.2. The cR and cL decrease with decrease
of the crack length, but they decrease slowly.
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