10,133 research outputs found
Authentic Tibetan Tantric Buddhism and its Controversial Terma Tradition: A Review
This short commentary reviews, on the one hand, the authentic formation and development of Tibetan Tantric Buddhism, an innovative branch that is featured by the transformation of negative emotions (NEs) to a valuable vehicle to reach the enlightenment of consciousness via achieving three different levels of kayas by experiencing three-stage practices; on the other hand, its problematic Terma tradition that claims to make use of six different ways in the transmissions of Buddhist teachings generation after generation. Both religious and scientific critiques are presented to this tradition in view of several aspects like the religious doctrine authenticity, historical veracity, and the formation of the tradition
Comparison between Hegel’s Being-Nothing-Becoming and I-Ching’s Yin-Yang-I (Change)
This article introduces a cross-cultural comparative study on Hegel’s Western triad of Being-Nothing-Becoming and I-Ching (including Tao-Teh-Ching, TTK)’s Eastern triad of Yin-Yang-I (Change). The study exposes the similarities and differences between the two triads in three aspects: concept, internal motivation, and external manifestation. Results include: (1) Hegel’s “Tao” is not identical to that of the Yin-Yang paradigm; (2) Hegel’s envision of Becoming is intrinsically far away from the essence of I-Ching’s I
Electrical Coupling Between Micropatterned Cardiomyocytes and Stem Cells
To understand how stem cells functionally couple with native cardiomyocytes is crucial for cell-based therapies to restore the loss of cardiomyocytes that occurs during heart infarction and other cardiac diseases. Due to the complexity of the in vivo environment, our knowledge of cell coupling is heavily dependent on cell-culture models. However, conventional in vitro studies involve undefined cell shapes and random length of cell-cell contacts in addition to the presence of multiple homotypic and heterotypic contacts between interacting cells. Thus, it has not been feasible to study electrical coupling corresponding to isolated specific types of cell contact modes. To address this issue, we used microfabrication techniques to develop different geometrically-defined stem cell-cardiomyocyte contact assays to comparatively and quantitatively study functional stem cell-cardiomyocyte electrical coupling. Through geometric confinements, we will construct a matrix of identical microwells, and each was constructed as a specific microenvironment. Using laser-guided cell micropatterning technique, individual stem cells or cardiomyocytes can be deposited into the microwells to form certain contact mode. In this research, we firstly constructed an in-vivo like cardiac muscle fiber microenvironment, and the electrical conductivity of stem cells was investigated by inserting stem cells as cellular bridges. Then, the electrical coupling between cardiomyocytes and stem cells was studied at single-cell level by constructing contact-promotive/-preventive microenvironments
Ion Velocity Distributions in Inhomogeneous and Time-dependent Auroral Situations
Aurorae often break down into elongated filaments
parallel to the geomagnetic field lines (B) with
cylindrically symmetric structures. The object of this thesis is to study the ion distribution function and transport properties in response to the sudden introduction of a radial electric field
(E) in such a cylindrical geometry. Both collision-free and collisional situations are considered.
The thesis starts by solving a collision-free problem where the electric field is constant in time but increases linearly with radius, while the initial ion density is uniform in space. The
attendant Boltzmann equation is solved by tracking the ions back in time, thereby using the temporal link between the initial position
and velocity of an ion and its position and velocity at an arbitrary time and place. Complete analytical solutions show that the ion
distribution function is a pulsating Maxwellian in time, and all transport parameters (e.g., bulk speed, temperature, etc.) oscillate in time but independent of radius. If the ion-neutral collisions are taken into account by employing a simple relaxation model, analytical solutions are also obtained. In this case, the ion distribution function can be driven to horseshoe shapes which are symmetric with respect to the ExB direction. The bulk parameters evolve in a transition period of the order of one collision time as they go from oscillating to the non-oscillating steady state.
In more realistic electric field structures which are spatially inhomogeneous but still constant in time, a generalized semi-numerical code is developed under collision-free conditions. This code uses a backmapping approach to calculate the ion velocity distribution and bulk parameters. With arbitrarily selected electric field rofiles, calculations reveal various shapes of ion velocity distribution functions (e.g., tear-drop, core-halo, ear-donut, etc). The associated transport properties are also obtained and discussed.
Under both collision-free and collisional conditions, the effect of the density inhomogeneities at the initial time is studied in an electric field which is proportional to radius and constant in time. With two profiles of the initial ion density for the collision-free
case, and one profile for the collisional case, complete analytical solutions are obtained. The results reveal that the distribution function and the bulk properties are now strongly dependent on
radial position.
If the radial electric field is unable to stay constant with time but modulated by in-coming charged particles, a fluid formalism is used to study the excitation of several plasma waves under different kinds of initial conditions. These identified waves include the ion cyclotron oscillation, the ion and electron upper-hybrid oscillations, and the lower-hybrid oscillation.
The results of this thesis are expected to be applicable to high-resolution observations. Future work should also include the mirror effect and the formation of conics in velocity space.
Finally, the velocity distributions obtained in this thesis could trigger various plasma instabilities, and this topic should also be
looked at in the future
- …