316 research outputs found

    Hete-CF: Social-Based Collaborative Filtering Recommendation using Heterogeneous Relations

    Full text link
    Collaborative filtering algorithms haven been widely used in recommender systems. However, they often suffer from the data sparsity and cold start problems. With the increasing popularity of social media, these problems may be solved by using social-based recommendation. Social-based recommendation, as an emerging research area, uses social information to help mitigate the data sparsity and cold start problems, and it has been demonstrated that the social-based recommendation algorithms can efficiently improve the recommendation performance. However, few of the existing algorithms have considered using multiple types of relations within one social network. In this paper, we investigate the social-based recommendation algorithms on heterogeneous social networks and proposed Hete-CF, a Social Collaborative Filtering algorithm using heterogeneous relations. Distinct from the exiting methods, Hete-CF can effectively utilize multiple types of relations in a heterogeneous social network. In addition, Hete-CF is a general approach and can be used in arbitrary social networks, including event based social networks, location based social networks, and any other types of heterogeneous information networks associated with social information. The experimental results on two real-world data sets, DBLP (a typical heterogeneous information network) and Meetup (a typical event based social network) show the effectiveness and efficiency of our algorithm

    Hete-CF : Social-Based Collaborative Filtering Recommendation using Heterogeneous Relations

    Get PDF
    The work described here was funded by the National Natural Science Foundation of China (NSFC) under Grant No. 61373051; the National Science and Technology Pillar Program (Grant No.2013BAH07F05), the Key Laboratory for Symbolic Computation and Knowledge Engineering, Ministry of Education, China, and the UK Economic & Social Research Council (ESRC); award reference: ES/M001628/1.Preprin

    Sherlock : a Semi-Automatic Framework for Quiz Generation Using a Hybrid Semantic Similarity Measure

    Get PDF
    Acknowledgments This work is supported by the BBC Connected Studio programme (http://www.bbc.co.uk/partnersandsuppliers/con nectedstudio/), the award made by the RCUK Digital Economy theme to the dot.rural Digital Economy Hub; award reference EP/G066051/1, the award made by UK Economic & Social Research Council (ESRC); award reference ES/M001628/1, National Natural Science Foundation of China (NSFC) under Grant No. 61373051, and the China National Science and Technology Pillar Program (Grant No. 2013BAH07F05). The authors would like to thank Ryan Hussey for the work on the user interface design and Tom Cass and James Ruston for the help in developing the Sherlock application. We are also grateful to Herm Baskerville for creating the editorial quizzes and Nava Tintarev for many helpful discussions on the human evaluation.Peer reviewedPublisher PD

    Cross-domain Generative Learning for Fine-Grained Sketch-Based Image Retrieval

    Get PDF

    A novel artificial bee colony based clustering algorithm for categorical data

    Get PDF
    Funding: This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. (21127010, 61202309, http://www.nsfc.gov.cn/), China Postdoctoral Science Foundation under Grant No. 2013M530956 (http://res.chinapostdoctor.org.cn), the UK Economic & Social Research Council (ESRC): award reference: ES/M001628/1 (http://www.esrc.ac.uk/), Science and Technology Development Plan of Jilin province under Grant No. 20140520068JH (http://www.jlkjt.gov.cn), Fundamental Research Funds for the Central Universities under No. 14QNJJ028 (http://www.nenu.edu.cn), the open project program of Key Laboratory of Symbolic Computation andKnowledge Engineering of Ministry of Education, Jilin University under Grant No. 93K172014K07 (http://www.jlu.edu.cn). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Contextual Biasing of Named-Entities with Large Language Models

    Full text link
    This paper studies contextual biasing with Large Language Models (LLMs), where during second-pass rescoring additional contextual information is provided to a LLM to boost Automatic Speech Recognition (ASR) performance. We propose to leverage prompts for a LLM without fine tuning during rescoring which incorporate a biasing list and few-shot examples to serve as additional information when calculating the score for the hypothesis. In addition to few-shot prompt learning, we propose multi-task training of the LLM to predict both the entity class and the next token. To improve the efficiency for contextual biasing and to avoid exceeding LLMs' maximum sequence lengths, we propose dynamic prompting, where we select the most likely class using the class tag prediction, and only use entities in this class as contexts for next token prediction. Word Error Rate (WER) evaluation is performed on i) an internal calling, messaging, and dictation dataset, and ii) the SLUE-Voxpopuli dataset. Results indicate that biasing lists and few-shot examples can achieve 17.8% and 9.6% relative improvement compared to first pass ASR, and that multi-task training and dynamic prompting can achieve 20.0% and 11.3% relative WER improvement, respectively.Comment: 5 pages, 4 figures. Conference: ICASSP 202

    Wired Perspectives: Multi-View Wire Art Embraces Generative AI

    Full text link
    Creating multi-view wire art (MVWA), a static 3D sculpture with diverse interpretations from different viewpoints, is a complex task even for skilled artists. In response, we present DreamWire, an AI system enabling everyone to craft MVWA easily. Users express their vision through text prompts or scribbles, freeing them from intricate 3D wire organisation. Our approach synergises 3D B\'ezier curves, Prim's algorithm, and knowledge distillation from diffusion models or their variants (e.g., ControlNet). This blend enables the system to represent 3D wire art, ensuring spatial continuity and overcoming data scarcity. Extensive evaluation and analysis are conducted to shed insight on the inner workings of the proposed system, including the trade-off between connectivity and visual aesthetics.Comment: Project page: https://dreamwireart.github.i

    Your "Flamingo" is My "Bird": Fine-Grained, or Not

    Full text link
    Whether what you see in Figure 1 is a "flamingo" or a "bird", is the question we ask in this paper. While fine-grained visual classification (FGVC) strives to arrive at the former, for the majority of us non-experts just "bird" would probably suffice. The real question is therefore -- how can we tailor for different fine-grained definitions under divergent levels of expertise. For that, we re-envisage the traditional setting of FGVC, from single-label classification, to that of top-down traversal of a pre-defined coarse-to-fine label hierarchy -- so that our answer becomes "bird"-->"Phoenicopteriformes"-->"Phoenicopteridae"-->"flamingo". To approach this new problem, we first conduct a comprehensive human study where we confirm that most participants prefer multi-granularity labels, regardless whether they consider themselves experts. We then discover the key intuition that: coarse-level label prediction exacerbates fine-grained feature learning, yet fine-level feature betters the learning of coarse-level classifier. This discovery enables us to design a very simple albeit surprisingly effective solution to our new problem, where we (i) leverage level-specific classification heads to disentangle coarse-level features with fine-grained ones, and (ii) allow finer-grained features to participate in coarser-grained label predictions, which in turn helps with better disentanglement. Experiments show that our method achieves superior performance in the new FGVC setting, and performs better than state-of-the-art on traditional single-label FGVC problem as well. Thanks to its simplicity, our method can be easily implemented on top of any existing FGVC frameworks and is parameter-free.Comment: Accepted as an oral of CVPR2021. Code: https://github.com/PRIS-CV/Fine-Grained-or-No
    corecore