3,077 research outputs found
AUTOMATIC LABELING OF RSS ARTICLES USING ONLINE LATENT DIRICHLET ALLOCATION
The amount of information contained within the Internet has exploded in recent decades. As more and more news, blogs, and many other kinds of articles that are published on the Internet, categorization of articles and documents are increasingly desired. Among the approaches to categorize articles, labeling is one of the most common method; it provides a relatively intuitive and effective way to separate articles into different categories. However, manual labeling is limited by its efficiency, even thought the labels selected manually have relatively high quality. This report explores the topic modeling approach of Online Latent Dirichlet Allocation (Online-LDA). Additionally, a method to automatically label articles with their latent topics by combining the Online-LDA posterior with a probabilistic automatic labeling algorithm is implemented. The goal of this report is to examine the accuracy of the labels generated automatically by a topic model and probabilistic relevance algorithm for a set of real-world, dynamically updated articles from an online Rich Site Summary (RSS) service
Pinning dynamic systems of networks with Markovian switching couplings and controller-node set
In this paper, we study pinning control problem of coupled dynamical systems
with stochastically switching couplings and stochastically selected
controller-node set. Here, the coupling matrices and the controller-node sets
change with time, induced by a continuous-time Markovian chain. By constructing
Lyapunov functions, we establish tractable sufficient conditions for
exponentially stability of the coupled system. Two scenarios are considered
here. First, we prove that if each subsystem in the switching system, i.e. with
the fixed coupling, can be stabilized by the fixed pinning controller-node set,
and in addition, the Markovian switching is sufficiently slow, then the
time-varying dynamical system is stabilized. Second, in particular, for the
problem of spatial pinning control of network with mobile agents, we conclude
that if the system with the average coupling and pinning gains can be
stabilized and the switching is sufficiently fast, the time-varying system is
stabilized. Two numerical examples are provided to demonstrate the validity of
these theoretical results, including a switching dynamical system between
several stable sub-systems, and a dynamical system with mobile nodes and
spatial pinning control towards the nodes when these nodes are being in a
pre-designed region.Comment: 9 pages; 3 figure
Inner and Inter Label Propagation: Salient Object Detection in the Wild
In this paper, we propose a novel label propagation based method for saliency
detection. A key observation is that saliency in an image can be estimated by
propagating the labels extracted from the most certain background and object
regions. For most natural images, some boundary superpixels serve as the
background labels and the saliency of other superpixels are determined by
ranking their similarities to the boundary labels based on an inner propagation
scheme. For images of complex scenes, we further deploy a 3-cue-center-biased
objectness measure to pick out and propagate foreground labels. A
co-transduction algorithm is devised to fuse both boundary and objectness
labels based on an inter propagation scheme. The compactness criterion decides
whether the incorporation of objectness labels is necessary, thus greatly
enhancing computational efficiency. Results on five benchmark datasets with
pixel-wise accurate annotations show that the proposed method achieves superior
performance compared with the newest state-of-the-arts in terms of different
evaluation metrics.Comment: The full version of the TIP 2015 publicatio
A Covert Data Transport Protocol
Both enterprise and national firewalls filter network connections. For data
forensics and botnet removal applications, it is important to establish the
information source. In this paper, we describe a data transport layer which
allows a client to transfer encrypted data that provides no discernible
information regarding the data source. We use a domain generation algorithm
(DGA) to encode AES encrypted data into domain names that current tools are
unable to reliably differentiate from valid domain names. The domain names are
registered using (free) dynamic DNS services. The data transmission format is
not vulnerable to Deep Packet Inspection (DPI).Comment: 8 pages, 10 figures, conferenc
- …