
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2014

AUTOMATIC LABELING OF RSS ARTICLES USING ONLINE AUTOMATIC LABELING OF RSS ARTICLES USING ONLINE

LATENT DIRICHLET ALLOCATION LATENT DIRICHLET ALLOCATION

Zhe Lu
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Computer Sciences Commons

Copyright 2014 Zhe Lu

Recommended Citation Recommended Citation
Lu, Zhe, "AUTOMATIC LABELING OF RSS ARTICLES USING ONLINE LATENT DIRICHLET ALLOCATION",
Master's report, Michigan Technological University, 2014.
https://digitalcommons.mtu.edu/etds/801

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Computer Sciences Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Michigan Technological University

https://core.ac.uk/display/151508324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F801&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.mtu.edu%2Fetds%2F801&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F801&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.mtu.edu%2Fetds%2F801&utm_medium=PDF&utm_campaign=PDFCoverPages

AUTOMATIC LABELING OF RSS ARTICLES USING ONLINE LATENT

DIRICHLET ALLOCATION

By

Zhe Lu

A REPORT

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2014

c© 2014 Zhe Lu

This report has been approved in partial fulfillment of the requirements for the Degree of

MASTER OF SCIENCE in Computer Science.

Department of Computer Science

Report Advisor: Laura Brown

Committee Member: Timothy Havens

Committee Member: Min Wang

Department Chair: Charles Wallace

Contents

List of Figures . ix

List of Tables . xi

Abstract . xiii

1 Introduction . 1

2 Background . 5

2.1 Rich Site Summary . 5

2.1.1 Feedly . 6

2.2 Latent Dirichlet Allocation . 7

2.3 Hierarchical Latent Dirichlet Allocation 9

2.4 Online-Latent Dirichlet Allocation . 11

2.5 Automatic labeling of Multinomial Topic Models 13

3 LDA, Hierarchical LDA and Online-LDA . 17

3.1 LDA and hierarchical LDA . 18

3.2 Online-LDA . 21

v

4 Automatic Labeling . 25

4.1 Single Word Labels . 25

4.2 Zero Bias . 26

4.3 Relaxation of Criteria . 26

4.4 Additional Rules for Candidate Selection 27

5 Implementation . 29

5.1 Feedly . 30

5.2 Google App Engine . 31

5.3 Google NDB Datastore . 32

5.4 Text Pre-Processing . 33

5.5 Web Application Structure . 34

5.6 Scaling, Task Queues and Scheduled Tasks 38

6 Evaluation and Performance Analysis . 43

6.1 Performance Analysis . 43

6.1.1 Segment Size . 43

6.1.2 Vocabulary Set Size and Contextual Collection Size 46

6.2 Evaluation . 47

6.2.1 Evaluation Setup . 47

6.2.2 Evaluation Results and Analysis 48

6.2.3 Article Labels and Vocabulary . 52

6.2.4 Comparing with Online-LDA Evaluation Results 54

vi

7 Conclusion and Future Work . 55

7.1 Conclusion . 55

7.2 Future Work . 56

References . 57

A News Article Sources . 61

A.1 Technology . 61

A.2 Mix . 62

B Evaluation Result: Generated Labels and Feedback Labels 63

B.1 Tech . 63

B.2 Mix . 66

vii

viii

List of Figures

2.1 Graphical model representation of LDA.[1] 8

2.2 Generative process of LDA . 8

2.3 Online-LDA procedure. 13

3.1 Original Graphical model representation of LDA (Left) and simplified

graphical model representation of LDA for VB approximation algorithm [1]. 18

3.2 Hierarchical-LDA algorithm. 20

3.3 Online-LDA algorithm. K: number of topics; D: number of documents. . . 23

5.1 Automatic Labeling web application structure 34

5.2 Front-end web page article list . 35

5.3 Fron-end web page article content . 36

5.4 Text pre-processing . 36

5.5 Algorithm for Automatic labeling with segments 40

6.1 Segment size and success rate of automatic labeling procedure 44

6.2 Average score of Tech account labels . 49

6.3 Average score of Mix account labels . 50

ix

6.4 Average scores of the labels from the 8 Tech account articles across 4 days . 53

x

List of Tables

6.1 Running time of labeling a segment of 32 articles with different contextual

collection size and vocabulary size (seconds). 46

6.2 Number of nouns and other types of labels and their average scores. 51

xi

Abstract

The amount of information contained within the Internet has exploded in recent decades.

As more and more news, blogs, and many other kinds of articles that are published on

the Internet, categorization of articles and documents are increasingly desired. Among the

approaches to categorize articles, labeling is one of the most common method; it provides a

relatively intuitive and effective way to separate articles into different categories. However,

manual labeling is limited by its efficiency, even thought the labels selected manually

have relatively high quality. This report explores the topic modeling approach of Online

Latent Dirichlet Allocation (Online-LDA). Additionally, a method to automatically label

articles with their latent topics by combining the Online-LDA posterior with a probabilistic

automatic labeling algorithm is implemented. The goal of this report is to examine the

accuracy of the labels generated automatically by a topic model and probabilistic relevance

algorithm for a set of real-world, dynamically updated articles from an online Rich Site

Summary (RSS) service.

xiii

Chapter 1

Introduction

The modern Internet contains billions of piece of information, and it is continuously

updated [2]. A challenge for today and the future is to separate information into

proper categories, which benefits both the organization that maintains it and the users

who consume it. Among different categorizing approaches, labeling is one of the most

commonly used methods: assigning specific words or phrases related to the content and

use them as keywords to group content under the same label.

In this report, we focus on news article labeling, specifically Rich Site Summary (RSS) [3]

news article labeling. Originally, the RSS news articles sometimes have manually assigned

words as labels to indicate the main topics of the given articles. The labels have high quality

because it is usually the author or the editor of the article who assigns the labels, which can

1

be considered as the reflection of the topics within the articles. However, the efficiency of

manual labeling is low and the coverage of the labels is limited. The task of this report is

to find a way to automatically label the news articles based on the context of a set of news

articles and the articles’ content.

To automatically label an article, we first need to generate a list of potential labels that

catch the main topic of the articles. To do this, we can make use of the probabilistic

topic modeling approaches to extract the topics within the set of articles. One of the most

successful topic modeling approaches is Latent Dirichlet Allocation (LDA) by Blei, Ng and

Jordan [1]. LDA is a generative probabilistic method that models a collection of documents

as a mixture over a latent set of topics, and each topic is modeled as a mixture of the

observed representation of elements of the collections. In this case, we can consider the

set of articles as the collection, the words that are used in the articles are the representation

and the latent topics are the mixture of words that can summarize the idea of the articles.

With LDA, we can generate a list of topics containing words for a set of articles, and use

these words as our potential labels.

Once we have the set of label candidates, the second step is to find the most accurate words

that represent the main idea of the articles. To achieve this goal, we use a relevance scoring

approach based on KL-divergence [4] as the post-processing step of the topic modeling and

rank the candidates with their scores [5]. The smaller the divergence, the higher the score,

and more “important” the candidate is to the article. Within the ranked candidates, we can

2

then select a subset of top candidates and use them as our final labels to the articles.

By combining these two methods, we can generate a list of labels for a specific article,

and use them to categorize the article as well as summarizing the content. Moreover, since

the articles are constantly and dynamically updated and can be seen as an infinite set of

documents, we use Online-LDA [6], an extension of LDA, that fits the online fashion by

iterating through incoming documents to handle large scale data.

The rest of the paper is organized as follow. In Chapter 2, we describe the background of the

sources, techniques and approaches that we use in this report. In Chapter 3, we compare

the Online-LDA with original LDA and hierarchical-LDA and discuss the advantages of

Online-LDA over the other two. Chapter 4 describes the modifications we make in our

report to the original Automatic Labeling algorithm. In Chapter 5, we propose the process

of the online automatic labeling. Chapter 6 presents the evaluation we conduct to examine

the accuracy of the labels generated by our web application. The conclusions and future

work are in Chapter 7.

3

Chapter 2

Background

This chapter introduces the concept of the technologies and algorithms used in this report.

For technologies, Rich Site Summary and the RSS service Feedly are briefly introduced.

For algorithms, the original Latent Dirichlet Allocation, its extensions hierarchical-LDA

and Online-LDA, and the automatic labeling algorithm are discussed.

2.1 Rich Site Summary

Rich Site Summary (RSS, also dubbed Really Simple Syndication) is an Internet service

that uses a family of standard web feed formats [3] to output frequently updated content,

such as news articles, blogs and podcasts. The output of RSS often includes the meta-data

5

of the content: RSS source, content title, posted time, author, and full or summarized text.

Users of RSS usually “subscribe” RSS documents (“feeds”) from different websites, and

then use an aggregator service to manage those feeds. Once subscribed, the aggregator will

constantly update when the website has new content, so that users don’t have to manually

check the website for updates.

By using the standard feed format, an RSS feed can be easily parsed through programs,

and therefore there are a large number of RSS aggregator applications that are available

for users. The most famous one is Google Reader, which was shutdown due to Google’s

strategy changes. After Google Reader’s shutting down, Feedly has become a popular RSS

aggregator.

2.1.1 Feedly

Similar to Google Reader, Feedly is a RSS aggregator application that contains subscription

management, RSS content parsing and browsing, etc [7]. Feedly also extends the

functionalities of RSS aggregator to a productivity tool, by adding links to different

productivity applications such at Evernote.

Additionally, Feedly also provides a set of public APIs which allows third party developers

access to core Feedly features. Thus, third party applications can make use of Feedly’s

6

retrieval and management of users’ subscriptions [7]. This report will use Feedly’s public

API to retrieve news articles from users’ accounts, and then use the articles to perform

Online LDA automatic labeling.

2.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [1] is a generative probabilistic topic model for a corpus.

Intuitively, LDA assumes that the documents in the corpus are represented as random

mixtures over a specific set of topics, which can be called latent topics. To be more specific,

the composition of a document can be divided into the following steps: the author has a set

of topics in mind; when he or she is writing the document, words will be chosen based on

the topics with a certain probability. Therefore, the entire document can be represented as

a mixture of multiple topics. According to this assumption, given a document, the latent

topics within can be extracted from the vocabulary used in the document, which is the core

task of LDA.

Figure 2.1 shows the graphical model of LDA. Let N be the number of words in a document,

the topic mixture be θ , the topics vector be z, and the words vector be w, the generative

process of LDA for the each document in a corpus is shown in Figure 2.2.

7

Figure 2.1: Graphical model representation of LDA.[1]

Algorithm 1: Generative process of LDA

1. Choose N ∼ Poisson(ξ);

2. Choose θ ∼ Dir(α);

for each word w in document d do

3. Choose a topic zn ∼ Multinomial(θ);

4. Choose a word wn from p(wn|zn,β) ;

end

Figure 2.2: Generative process of LDA

Based on the process above, the joint distribution of θ , z, and w can be written as:

p(θ ,z,w|α,β) =
D

∏
d=1

p(θ |α)
N

∏
n=1

p(zn|θ)p(wn|zn,β), (2.1)

where D is the corpus containing all documents, w is the vector of all words in the corpus,

N is the total words in the corpus and α and β are parameters to be inferred.

The inference of parameters requires the use of estimation, as the distribution p(w|α,β) is

intractable in general. Two approaches are widely used for the inference of the parameters:

8

variational inference [8] and Markov Chain Monte Carlo methods.[9].

LDA is a good algorithm for providing candidate labels, but the Internet is a giant data set

and RSS articles are frequently updated; hence, the original LDA is not suitable for labeling

RSS articles.

2.3 Hierarchical Latent Dirichlet Allocation

Hierarchical Latent Dirichlet Allocation (hLDA) [10] is an extension of LDA that addresses

learning topic hierarchies from data using a nested Chinese restaurant process.

A nested Chinese restaurant process can be described as a hierarchy of Chinese restaurants,

where each of the restaurants has infinite number of tables, and each table refers to

another restaurant. One restaurant is assigned as the root restaurant, where visitors visit

it first. Assuming that there are m visitors coming to the city and are planning to visit

the restaurants, every day they visit one restaurant in the hierarchy starting from the root

restaurant, and the next day they will choose the restaurant referred from the table they

chose previously. At the end of the trip, each of the visitors will form a path in the hierarchy,

and together the visitors form a subtree within the infinite branch tree of restaurants.

The Chinese restaurant process is formed by two equations that describes a scenario of the

9

seat choosing process of an imagined Chinese restaurant:

p(occupied table i | previous customers) =
mi

γ +m−1
, (2.2)

p(next unoccupied table | previous customers) =
γ

γ +m−1
, (2.3)

where m is the number of customers at table i and γ is a scalar parameter of the process. The

two equations describes a scenario of choosing a seat in a restaurant with an infinite number

of tables, each of which has an infinite number of seats. A sequence of customers arrive at

the restaurant, the first customer sits at the first table, and for the rest of the customers, they

can choose to sit with the previous customer, or sit at an empty table that is not occupied

by any other customers. The scalar parameter γ represents the probability of a customer

choosing a new table versus choosing an occupied table.

Nested Chinese restaurant processes (nCRP) can be used in topic modeling for recovering

levels of abstractions of a topic. Hierarchical LDA is such topic model that builds on nCRP,

which arranges the topics into a tree structure, with more general topics appear in higher

levels (near root) and specialized topics in lower level.

Because of the tree structure of hLDA topics models, it gives a good set of label candidates

as we can consider different levels of generalization of the topics. However, because hLDA

still requires a full pass of the corpus, it is not suitable for an online system.

10

2.4 Online-Latent Dirichlet Allocation

Online Latent Dirichlet Allocation (Online-LDA) [6] is an extension of the original LDA

algorithm, which implements the method in an online fashion for handling large scale data

analysis.

The original LDA method can be seen as a probabilistic factorization of the observed word

counts matrix, each of element of the matrix indicates the number of appearances for a

specific word in a document. The factorization outputs a topic weights matrix containing

the topics’ contributions to the documents, and a dictionary of topics. The Online-LDA

method can thus be seen as an extension that uses an online matrix factorization approach.

Online-LDA uses a variational Bayes approach to perform parameter estimation [1].

Originally, the variational Bayes approach for LDA is to maximize the Evidence Lower

BOund (ELBO)

log p(ω|α,η)≥ L (w,φ ,γ,λ)� Eq[log p(w,z,θ ,β |α,η)]−Eq[logq(z,θ ,β]. (2.4)

The posterior over the per-word topic assignment z is parameterized by φ , the posterior

over per-document topic weights θ is parameterized by γ and the posterior over topics β is

parameterized by λ .

11

The equation can be factorized to

L (w,φ ,γ,λ) = Σd{Eq[log p(wd|θd,zd,β)]+Eq[log p(zd|θd)]

−Eq[logq(zd)]+Eq[log p(θd|α)]

−Eq[logq(θd)]+Eq[log p(β |η)]

−Eq[logq(β)]/|D |}.

(2.5)

Also, L is optimized using coordinate ascent over the variational parameters φ , γ , λ , [6]

φdwk ∝ exp{Eq[logθdk]+Eq[logβkw]},

γdk = α +Σwndwφdwk,

λkw = η +Σdndwφdwk,

where k is the k-th topic, d is the d document in the corpus, and w is the w-th word in the

vocabulary set.

The variational Bayes inference for LDA uses a Expectation Minimization (EM) approach

to estimate these three parameters, which requires a full pass of the corpus, and thus limits

its use when there are new documents coming constantly.

The basic idea of Online-LDA is to use mini-batches instead of the entire corpus to estimate

12

Algorithm 2: Online-LDA procedure

for Every mini-batch t do
1. E-step: find a locally optimized parameter φt and γt with fixed λ

2. M-step: compute λ̃ using φt and the observed word count nt . And then update λ

with λ̃ .
end

Figure 2.3: Online-LDA procedure.

the parameters. The mini-batches are used for fitting λ . The algorithm constantly reads

mini-batches, and updates λ after each iteration.

The procedure of Online-LDA is shown in Figure 2.3. Online-LDA is claimed to have faster

convergence speed, and because it is capability of handling large scale document analysis

and frequent updating documents, this report will use this method to generate candidates

for article labeling.

2.5 Automatic labeling of Multinomial Topic Models

Automatic labeling of multinomial topic models is a probabilistic approach to objectively

label topics generated from topic models in a statistical fashion. In this method, the

automatic labeling problem is seen as an optimization problem where the KL divergence

between word distributions is minimized while the mutual information between a label and

a topic model is maximized [4].

The approach here is to compute a relevance score for each candidate label, which

13

is retrieved from a topic model θ , based on a probabilistic method for selecting

understandable, semantically relevant and discriminative words.

In [5], the authors mention two relevance scoring methods: zero-order relevance and

first-order relevance. The zero-order relevance is described as

Score = log
p(l|θ)

p(l)
= ∑

0≤i≤m

log
p(ui|θ)

p(ui)
, (2.6)

where l is a candidate phrase l = u0u1 · · ·um and ui is a word. The basic idea of this method

is that the more important words, i.e., high p(u|θ) a phrase contains, the better it is.

For first-order relevance, the goal is to measure the closeness of two multinomial

distribution p(w|l) and p(w|θ) by using KL divergence. Ideally the best label candidate

should have zero KL divergence. However, the distribution p(w|l) is unknown, and

therefore needs to be approximated. In [5], a method is described for using p(w|l,C),

where C is a context collection, to replace p(w|l). The scoring can be described as

Score(l,θ) =−KL(θ ||l)

= Σw p(w|θ) log
p(w, l|C)

p(w|C)p(l|C)

−KL(θ ||C)−Σw p(w|θ) log
p(w|l,C)

p(w|l)
,

(2.7)

where −KL(θ ||l) is the KL-divergence of p(w|θ) and p(w|l). The first component is the

expectation of point-wise mutual information between l and the terms in the topic model

14

θ given the context C . The second component is the KL divergence between the topic

and the context collection, which can be ignored since it is identical for all candidates. The

third component is the bias of using context collection C , which can be also ignored if both

the label candidates and the topic model are generated from the collection.

In this report, our method of labeling news articles is similar but not identical to the method

described in [5]; instead of using phrases generated in the articles, we directly use single

words as labels and we generate multiple labels for each article.

15

Chapter 3

LDA, Hierarchical LDA and

Online-LDA

This section discusses the differences between the original LDA, its extensions hierarchical

LDA and Online-LDA, and the reason we select Online-LDA for automatic labeling.

17

Figure 3.1: Original Graphical model representation of LDA (Left) and

simplified graphical model representation of LDA for VB approximation

algorithm [1].

3.1 LDA and hierarchical LDA

As mentioned in Chapter 2, the main process of LDA is the inference of the parameters α

and β , which can be expressed as the posterior distribution given a document:

p(θ ,z|w,α,β) =
p(θ ,z,w|α,β)

p(w|α,β)
.

However, the distribution is intractable in general; hence, the authors of [1] suggest a

variational inference algorithm to approximate the inference.

The basic idea of variational inference used in LDA is to obtain an adjustable lower bound

on the log likelihood [8]. Specifically, in LDA, the graphical model is modified, edges

of coupling parameters θ , β and the node w are removed to obtain a simplified tractable

18

family of lower bounds, as shown in Figure 3.1. The family of lower bounds can therefore

be presented as an variational distribution

q(θ ,z|γ,φ) = q(θ |γ)
N

∏
n=1

q(zn|φn). (3.1)

Next the parameters γ and φ are estimated by an optimization problem

(γ∗,φ∗) = argmin
γ,φ

D(q(θ ,z|γ,φ)||p(θ ,z|w,α,β)), (3.2)

where the optimization problem is to minimize the KL-divergence between the variational

distribution and the posterior p(θ ,z|w,α,β).

The estimation of parameter γ and φ is per document, and an Expectation-Maximization

procedure is used along with the variational inference to approximate the parameter α and

β :

1. E step: find the optimized parameter γ and φ for each document.

2. M step: use the parameters optimized in E step to maximize the lower bound of the

log likelihood

l(α,β) = ΣM
d=1log(wd|α,β),

until the log likelihood converges, where M is number of documents within the

19

Algorithm 3: Procedure of hierarchical-LDA

Data: Current states of {c
(t)
d ,z

(t)
n,d}

for every document in corpus D do

1. Sample level allocations: Randomly draw c
(t+1)
d from

p(cd|w,c−d,z,η ,γ) ∝ p(cd|c−d,γ)p(wd|c,w−d,z,η).

2. Sample Path: Randomly draw zt+1
n,d for every word from

p(zd,n|z−(d,n),c,w,m,π,η) ∝ p(zd,n|zd,−n,m,π)p(wd,n|z,c,w−(d,n),η).

end

Figure 3.2: Hierarchical-LDA algorithm.

corpus.

Similarly, the extension hierarchical-LDA also uses inference to approximate the

parameters. However, the authors of [10] use the MCMC Gibbs Sampling [11, 12] instead

of variational inference as the inference algorithm. In hLDA, the target distribution sampled

is the per-document path cd , which is the probability of a document to choose topics

(the nodes) from the root of the nested Chinese Restaurant Process, and the per-word

level allocations to topics in the paths zd,n. The procedure of hLDA is summarized in

Figure 3.2, where γ represents the probability of a document selecting the topic (the node),

c−d represents the path vector without cd , and η represents the expected variance of the

underlying topics, η represents the expected variance of the underlying topics, parameters

m and π represents the expectation of allocations of words to levels in a document, and

z−(n,d) and w−(d,n) are the vectors of the level allocation and words without zn,d and wd,n.

The algorithm is guaranteed to converge after a sufficient number of iterations.

20

An advantage of hierarchical LDA is the structural topic model generated by the algorithm.

Unlike the original LDA, hierarchical LDA generates a tree structure of topic models with

different level of generalization. With this algorithm, we can generate a topic model that

holds the information of generalization of the words in respect of the topics, and the

selection of candidates in our labeling process can be more effective since we have one

more condition to look at — the level of generalization of the topics.

However, both LDA and hierarchical-LDA require iterating through the entire corpus in

order to complete the inference procedure. Given the online property of the RSS news

articles, we do not want to limit the size of articles in our process, and using LDA or

hierarchical-LDA would require re-computing the topic model once a new set of articles

are fetched from the RSS aggregator.

3.2 Online-LDA

On the other hand, another extension of LDA, Online-LDA is a topic modeling procedure

designed for handling large scale data, which in this case is a large number of documents.

As mentioned in Chapter 2, Online-LDA uses variational inference as the inference

algorithm, but is different from the original LDA. Online-LDA uses an online variational

inference for LDA to approximate the parameters.

21

Online-LDA also uses an EM procedure; the E-step is similar to the original LDA, which

tries to find the local optimal values for γ and φ with parameters λ fixed. In the M-step,

however, Online-LDA computes λ̃ using γ and φ obtained from E-step and use it to update

λ . λ̃ represents the setting of λ optimal to the situation where the entire document set

is formed by a single document D times, where D is the number of unique documents

available. A weight ρ0 � (τ0 + t)−κ is assigned to each λ̃ computed in every iteration.

Instead of passing through the entire corpus of data, Online-LDA uses mini-batches to

perform the EM procedure, which follows a multiple observations per update technique in

stochastic learning. To be more specific, the update of λ̃ can be written as

λ̃ = η +
D

S
∑
s

ntskφtskw,

where D is the size of the entire corpus, S is the size of mini-batch. The procedure of

Online-LDA is shown in Figure 3.3.

In Chapter 1, we described the challenge for this application is that the RSS articles are

constantly updates, meaning that we are dealing with an infinite size of input. Therefore

even though the hierarchical LDA provides a structural topic model that can help further

classify articles with the level of topics, due to the lack of ability to handle data online,

Online-LDA fits the requirement of our goal and therefore is selected over the original

LDA and hierarchical LDA.

22

Algorithm 4: Online-LDA algorithm

Define ρ0 � (τ0 + t)−κ ;

Randomly initialize λ ;

while True do

Initialize γtk arbitrarily;

repeat

/* Optimize L over variational parameters φ and γ */

Set φtwk ∝ exp{ Eq[logθtk]+Eq[logβkw] };

Set γtk = α +Σwφtwkntw ;

until 1
K

ΣK |change in γtk|< 0.00001;

/* Compute λ̃ and optimize λ */

Compute λ̃kw = η +Dntwφtwk;

Set λ = (1−ρt)λ +ρtλ ;

end

Figure 3.3: Online-LDA algorithm. K: number of topics; D: number of

documents.

23

Chapter 4

Automatic Labeling

In [5], Mei et al. proposed an algorithm that uses the result of topic modeling to generate

labels for the topics. We use this algorithm with modifications as the final step of generating

labels for news articles.

4.1 Single Word Labels

The first difference we have made compared to [5] is that we only consider single words

for the label candidates. In [5], phrases are used as label candidates over single words

and sentences, where a single word is too generative to reveal details of a topic, and a

sentence is too specific to cover aspects of it. However, as our labeling target is news

25

articles instead of topics, a phrase sometimes cannot catch the main idea of the article, and

we essentially will have multiple words being used as labels that not only summarize the

article but also provide some details. Therefore, we choose to use multiple single words as

our label candidates.

4.2 Zero Bias

As mentioned in Section 2.5, we use first-order relevance scoring as our scoring method.

To approximate the distribution p(w|l), we use the mini-batch of articles in an iteration of

Online-LDA as the context collection, which is also the collection that we use for the topic

model. Therefore, the bias in equation 2.7 can be ignored as we use the same collection to

generate both the labels and the topics.

4.3 Relaxation of Criteria

In this application, we do not consider the high coverage labels criteria [5] proposed for

topic labeling. Originally the idea of high coverage labels was to select labels that cover

as much semantic information of a topic as possible, as only one label is selected for one

topic. In our case, we want to select multiple words as the labels for each articles to cover

as many aspects of the articles as possible. Hence, the restriction of finding high coverage

26

labels is relaxed and the task can be simplified to finding the most useful labels in a topic

for a specific article.

We also do not consider the discriminative labels criteria proposed in [5]. The argument

described in the original paper is that a label that appears in many topics is not a useful

label as it is not discriminative, that is, a good label should have high semantic relevance

to the target topic but low relevance to other topic models. In our case, the news articles in

different topics can be labeled the same as long as the label is useful in each topic. News

articles are time sensitive and therefore it is possible that news articles during a specific time

period are talking about the same event, but in different aspects. We want to label these

related articles with similar labels, and therefore do not apply the discriminative criteria.

4.4 Additional Rules for Candidate Selection

Another modification introduced in our application is that we only consider words that

explicitly appear in the article to be label candidates. The topic model can be represented as

the probability of given words to be selected for the specific topic. While the words having

higher probability are more important to the topic, they may not be equally important for

articles, because some of the words may not appear in the articles. Ideally, to generate

labels that are related to the article, we first need to measure the relation between the words

and the article, and setup a threshold to select those are closely related to the article, not

27

necessarily appearing in the article. However at this moment, we only consider the words

that have explicitly appeared in the article to simplify the analysis process.

Last, we include the words that explicitly appear in the title of the articles into the

candidate set. We also assign a larger weight to the words in the title while computing

relevance scores. The intuitive reason is that for most news articles, the title usually

includes important words that summarize the article, and therefore should be considered

as important to the article and be added into the candidate set.

28

Chapter 5

Implementation

This section covers the implementation details of the project. The project uses Feedly

RSS aggregator service as the source of the news articles, and uses the Feedly public

API to fetch articles from our test account. The automatic labeling is programmed using

Python and the Google App Engine public API. The service is hosted on Google App

Engine as a web application. In Section 5.1, we briefly describe the Feedly public API

and our implementation of fetching articles. In Section 5.2, we introduce the Google App

Engine (GAE) web application platform and its advantages and limitations. Section 5.5

and Section 5.6 are used to discuss some of the GAE limitations and the workarounds in

our implementation.

29

5.1 Feedly

The main API call used in this project is the Feedly stream API, which creates a stream of

articles sorted by time and outputs a certain number of them based on the caller’s request.

The stream does not have restriction on the subscriptions that the articles come from.

The parameter that limits the number of articles to be downloaded is particularly useful for

our Online-LDA algorithm, as the parameters chosen for running Online-LDA affects the

topic model, and reference [6] provides a set of empirically selection of parameters that

perform well than the others. Therefore, we want to restrict the articles downloaded in

every mini-batch to match these empirical parameters. Moreover, the articles downloaded

to the web application should be consistent with the ones in Feedly to preserve the user

experience. To achieve this goal, we use another API call that Feedly supports to get the

number of new articles that is newer than the latest article in our database, and only start

the analysis procedure if the number of new articles reaches the mini-batch size. We use

this API call frequently to make sure that the number of new articles we need to download

does not exceed too much compared to the empirical mini-batch size.

30

5.2 Google App Engine

Google App Engine (GAE) [13] is a Platform as a Service (PaaS), which allows users

to run web applications on Google’s infrastructure. Applications on GAE are running in a

sandbox environment, which allows the applications to run across multiple servers. Google

provides public APIs and toolkits for Python, Java, PHP and Go programming language

that help developers integrate web applications into GAE.

GAE has several advantages for deploying, distributing and scaling web applications:

– Automatic scaling and load balancing; users can choose to use GAE’s scaling method

or manual scaling.

– Scheduled tasks and separated task queues that can be used to manage requests.

– Built-in Datastore and SQL provide easy management of databases.

– GAE connects to other Google cloud services, e.g Google Cloud Storage.

On the other hand, GAE has limitations on the use of its service. The free quota of GAE

limits the amount of storage (1 GB), the instance time for both front end instance (28

instance hours) and back end instance (9 instance hours). Users have to enable billing to

continue using GAE if they pass the free quota, and the cost depends on the usage rate of

the services in GAE.

31

Another limitation in GAE is the request timeout in front-end instances. GAE limits the

timeout of requests on front-end instances to 1 minute, and it will terminate the HTTP

request and return an error if a request cannot return within 1 minute. If a task running

on GAE requires to run for a long time without returning, it should be running on the

back-end instances. However, GAE also has the right to shut down back-end instances

without notifying developers due to several reasons, some of which can be the instance

is running out of memory, or the instance has to be restarted. These random shut-down

happen more frequently when using lower end instances.

5.3 Google NDB Datastore

Google App Engine provides API for NDB Datastore [14], which is a persistent, consistent

and scalable schemaless storage for web applications. It is based on Google Bigtable [15],

a distributed scalable data storage developed by Google. Some of the highlights for NDB

Datastore are:

– advanced querying features,

– high availability of reads and writes,

– strong consistency for reads and ancestor queries, and

– eventual consistency for all other queries.

32

In NDB Datstore, objects stored are called entities, each entity can contain one or more

properties with supported data types. NDB Datastore also has a concept of Model. It

can be seen as the counterpart of the database schema, which defines the properties for a

specific kind of data.

5.4 Text Pre-Processing

After the articles are downloaded, we conduct text pre-processing to generate an input

articles list for the Online-LDA procedure, as well as building the vocabulary set used for

both Online-LDA and automatic labeling procedure.

First, when each article is downloaded, we create a list of words that appear in the article by

splitting the article with punctuations. Given a list of 525 stop-words, we then scan through

the list of words and remove all appearances of stop-words. Stop-words are common words

to all documents that do not add any value to the topics or labels, e.g., and, but and the.

Finally, after a mini-batch of articles is downloaded, we combine all words lists together

and form the input parameter for Online-LDA.

For building the vocabulary set, we take the input word lists for Online-LDA and remove

all duplicate words, and create a new list containing only the unique words that appear in

this mini-batch.

33

Figure 5.1: Automatic Labeling web application structure

In this report, we use the first mini-batch to generate a vocabulary set and use it as the

vocabulary for the rest of the mini-batches. To include as many words as possible while

maintaining the efficiency of the algorithm, we double the number of articles downloaded

in the first mini-batch.

5.5 Web Application Structure

The structure of automatic labeling web application can be separated into two modules:

front-end web UI module and back-end analysis module. Figure 5.1 shows the structure of

the web application.

The front-end web module uses GAE’s front-end instance to host the UI of the web

34

Figure 5.2: Front-end web page article list

application: a web page that displays the articles fetched and labeled with their labels; a

web page the content of articles and a feedback system that allows user to rate the accuracy

of the labels, and provide suggestions on what words should be used for a particular article.

Figure 5.2 shows the basic layout of the website, which contains article grids and their

labels. Also there is a section displaying most frequently used labels, which represent the

current trending topics within the labeled articles. Figure 5.3 shows the layout of the article

content, containing the article with its meta-data, plus the user feedback system that we use

to collect accuracy survey data.

The back-end module is responsible for article analysis and labeling procedure. The

35

Figure 5.3: Fron-end web page article content

Algorithm 5: Text pre-processing

for Every article downloaded do
1. Remove all stop-words from the article,

2. Create a list of words,

3. Create a dictionary object of unique words based on the list of word as vocabulary,

which will be used in Online-LDA procedure.

4. Insert the article and its meta-data (title, posted time, author, source) into a

temporary NDB model.

end

Figure 5.4: Text pre-processing

procedure can be divided into three parts: fetching articles from Feedly RSS service,

running Online-LDA, and running labeling process. When the module instance is launched,

it first queries the Feedly server to check if there are enough new articles to be downloaded.

If not, the instance is terminated. Otherwise, the instance downloads these new articles and

performs the pre-processing shown in Figure 5.4.

36

After the pre-processing, an Online-LDA procedure is launched on the instance. This

procedure will take the corpus of word lists and the vocabulary generated from the

pre-processing as input, and run a mini-batch to update λ and γ . The updated vector λ

indicates the likelihood of the latent topics and specific words, and the vector γ indicates

the likelihood of latent topics and documents. These two vectors and the vocabulary will

be used in the labeling procedure as input.

The labeling procedure starts with reading articles from the temporary NDB model, and

for each article: selects a topic that is most important, i.e., has the maximum normalized

probability in γ . Then the procedure selects the row corresponding to the selected topic’s

index, and queries the vocabulary to get a list of likelihoods of words in this topic. Within

this list of words, we choose the top 20 words that have the highest probability and also

explicitly appear in the article, and add them into our label candidate set. We also generate

a list of words without stop-words from the article’s title and add them to the candidate set.

The next step of the labeling procedure is to calculate the relevance score for each candidate

in the candidate set. Here we use all articles in the temporary NDB model as the context

collection C and perform the first-order relevance scoring. Since the candidates are all

generated from the context collection C , we do not consider the bias, and we also ignore

the KL-divergence between topics and C .

The final step of the labeling procedure is to sort the candidates with their relevance scores,

and choose the top 10 words as the final labels. The procedure will store the articles with

37

labels into a final NDB model and remove the corresponding entries from the temporary

table.

Both front-end and back-end use Google NDB Datastore to store and retrieve data. In our

application, we use NDB Datastore with two main NDB models to store our core data:

Label model, which stores all labels generated by our automatic labeling process and the

references to the articles being labeled, and Labeled Article model, which stores all labeled

articles and their meta-data. In addition, we also use a temporary NDB model, “Unlabeled

Article”, to store the articles downloaded but haven’t been labeled with their meta-data.

Another use of the NDB Datastore is the feedback from users. As indicated as a dashed

arrow in Figure 5.1, we store the average scores for each label and the user suggested labels

into a model in our Datastore instance.

5.6 Scaling, Task Queues and Scheduled Tasks

As mentioned in Section 5.2, GAE’s limitations on web applications largely shape the

implementation of the automatic labeling application, especially the work flow of the

labeling process. In this section, we discuss the changes in the work flow and the use

of GAE’s task queue and scheduled task to work around the limitations [16].

To overcome the front-end request timeout issue, as we mentioned in previous sections,

38

we separate the web application into two modules, and use GAE’s modules API to setup

the modules. The front-end module of automatic labeling uses the GAE default module,

which has the limitation of 60-second HTTP request deadline. The front-end module is

not responsible for time-consuming analysis jobs and mainly focuses on handling HTTP

request from and to the web page, which returns fairly quickly in most cases, and therefore

we don’t have to worry about exceeding the deadline.

The back-end module, on the other hand, uses a basic scaling [16] module provided by

GAE to avoid reaching HTTP request deadline. By using basic scaling, the module will

automatically create instances when the application receives requests, and the number

of instances created is decided by the workload and the maximum number of instances

assigned. The basic scaling also uses a parameter called idle_timeout to decide when to

shut down the instances, that is, if the instance idles longer than the idle_timeout, GAE

will shut it down. Thus, by using the basic scaling back-end instance, we avoid exceeding

deadline termination of the Online-LDA and automatic labeling procedure, and the basic

scaling of the module provides a good way to reduce the instances’ idle time and therefore

reduce the cost.

Another limitation we have to deal with is the random termination of the instances by GAE.

Due to the limited resources of the instances, the compute-intensive work we are doing for

labeling, and some other reasons that are out of our control, the instances are often shut

down by GAE before completing the procedures. The details of the performance issue

39

Algorithm 6: Automatic labeling with segments

1. Set the number of articles in each iteration to be N.

2. Set the current index to be 0, enqueue a new labeling procedure.

3. for each labeling procedure do
A. load N articles started from the current index (loaded from temporary storage) from

the temporary NDB model,

B. label N articles, increment current index by N,

C. store labeled articles into the final NDB model, store the current index into

temporary storage,

D. enqueue a new labeling procedure.

end

4. All articles are labeled, delete all articles from the temporary NDB model.

5. Query Feedly server for new articles, if there are enough new articles, fetch and start

Online-LDA procedure. If not, idle.

Figure 5.5: Algorithm for Automatic labeling with segments

associated with random termination is discussed in Section 6.1.

Reducing the time that a single labeling task takes is an relatively easy and efficient

way to overcome the termination issue, and this can be done by dividing an original

automatic labeling task into several segments, each of which labels a subset of the articles

in the original task. To separate the automatic labeling procedure into segments, we take

advantage of the task queue in GAE. Here we use the Push Task Queue API that GAE

provides to implement the iterations. The algorithm is described in Figure 5.5. The

repeated sub-procedure of labeling guarantees they will return in a small amount of time,

and therefore reduce the chance to be shut down by GAE.

At the end of the automatic labeling procedure, we enqueue one article fetching procedure

to see if there are enough new articles to be analyzed. If the number of new articles doesn’t

exceed the mini-batch size, we put the instance to idle and let it be shut down automatically.

40

However, to make sure articles are fetched and labeled on time, we use the Cron scheduled

task API in GAE to schedule repeated article fetching procedure. The scheduled task

queries Feedly server for new articles every interval, and enqueue a new article fetching

procedure if there are enough new articles to be downloaded.

41

Chapter 6

Evaluation and Performance Analysis

6.1 Performance Analysis

This section focuses on the performance analysis of the automatic labeling procedure,

specifically the effect of GAE instance and the effect of different vocabulary sets and

contextual collection sizes.

6.1.1 Segment Size

We conducted an experiment to show that the effect of instance type and segment size on

automatic labeling success rate. In our experiment, we use one B1 instance as our back-end

43

Figure 6.1: Segment size and success rate of automatic labeling procedure

instance (lowest instance type), select 2,400 words as the vocabulary set and run multiple

automatic labeling procedure with different segment sizes. We then observe the running

status of the instance and record the success rate, i.e., the number of completed tasks over

all tasks. To be specific, we run the experiment with 3 different segment sizes: 64, 32 and

4, and we run multiple automatic labeling procedures over 5 days. Figure 6.1 shows the

success rate of the automatic labeling procedure for the three segment sizes. Note that in

this experiment, we only mark a task failed if it is terminated by GAE before the analysis

completes.

44

As shown in Figure 6.1, the success rate of segment size 64 is the lowest. Interestingly, for

this segment size the success rate was low in the first 3 days, but succeeded almost every

task in the last two days. An explanation could be that there were different workloads

within GAE over these days, where in the first 3 days it had to terminate the instance to

give resources to other instances while the last 2 days the workload was relatively low.

The average time that the successful segments use is 6,134.98 seconds. On the other hand,

the segment size 4, a conservative segment size, yields a success rate of 100%. By using

this segment size, we reduce the time that each segment requires to 500 seconds to 1,000

seconds, and since each segment only tries to label 4 articles, it completes with a small

amount of resource required; the segment is never terminated earlier by GAE. However,

due to the requirement of storing temporary states of the computation, the overall time

spent on the segments is increased compared to using segment size of 64. For segment size

32, all segments completed successfully. Furthermore, using segment size 32 shortens the

time spent on the automatic labeling procedure compared to using segment size of 4. For

segment size 32, the average time for running a segment is 4,427.48 seconds, and since

for every 64 articles, we need to run 2 segments, the overall time cost is worse than using

segment size of 64, but better than segment size of 4. Therefore, to ensure the success rate

of the segments, a smaller segment size is preferred; yet to improve the performance of the

procedure, we want the segment size to be larger.

45

Vocabulary size

Contextual collection size 2,400 4,000

64 1,427.82 2,048.52

128 2,492.99 4,516.92

Table 6.1

Running time of labeling a segment of 32 articles with different contextual

collection size and vocabulary size (seconds).

6.1.2 Vocabulary Set Size and Contextual Collection Size

To examine the performance of the automatic labeling given different sizes of vocabulary

and contextual collection, we conducted an experiment on local environment instead

of GAE to measure the running time of the procedure segments. We select local test

environment over GAE environment because of the easy control of parameters adjustments

and easy access to logs. GAE provides a simulated cloud environment that runs locally but

simulates the running environment of real GAE web applications, we use this development

environment to perform the experiment. The experiment was conduncted on a mid-2012

Macbook Pro with 2.6 GHz Intel Core i7 processor, 8 GB 1600 MHz DDR3 memory and

256GB SSD.

In the experiment, the segment size was fixed at 32 articles, and two other parameters,

vocabulary size and contextual collection size, were adjusted to examine the running time.

Each combination was run 5 times, each time a segment of 32 articles will be labeled,

and the average running time is used for comparison. Figure 6.1 shows the result of the

46

experiment. As expected, increasing vocabulary size or contextual collection also increases

the running time of the automatic labeling procedure, as the vocabulary size affects the

size of λ , and the contextual collection size affects the number of iterations required to

complete the automatic labeling procedure. However, having larger contextual size and

vocabulary size will result in potentially better label quality, since the the larger vocabulary

and collection could cover more aspects of the articles and hence provide better candidates.

6.2 Evaluation

6.2.1 Evaluation Setup

Our evaluation examines two different categories of news articles sources: a set of news

articles dedicated to technology and consumer electrics products, and a set of news articles

mixed with 5 different topics: business, cooking, design, news and technology. The details

of the news article sources can be found in Appendix A. In both categories, the articles are

all labeled with 10 unique labels selected set of candidates sorted by relevance scores.

Our web application was run on a single GAE B4 instance with 2.4 GHz CPU frequency

and 512 MB memory limit. In the Online-LDA procedure, we chose 64 as the mini-batch

size (except for the first mini-batch), and used the parameter values K = 50, D = 3.3×106,

α = 0.02, η = 0.02, τ0 = 64 and κ = 0.7. A vocabulary set of 6,000 words generated from

47

the first 128 articles was used as the vocabulary set of the procedure. For each automatic

labeling procedure, we chose a contextual collection size of 64, and a segment size of 8

was used to minimize the random termination occurrence due to the large vocabulary used

in the web application.

In our evaluation, users get access to our web application through their web browser, and

then choose articles from the article list to read. While users are in the article content page,

there are 10 labels assigned to the article from our automatic labeling procedure, together

with 10 control interface used to rank the accuracy of the labels: not related, not very

accurate, neutral, somewhat accurate, and accurate. Users can also type labels in the input

box below the 10 labels to provide further suggestions on how the article should be labeled.

When users complete the feedback form, they can submit the result to the web, which is

running on the front-end instance. The front-end instance then computes the average score

for each label in the article with the points assigned: 1 for not related, 2 for not very

accurate, 3 for neutral, 4 for somewhat accurate and 5 for accurate. Every label has a score

of 3 by default.

6.2.2 Evaluation Results and Analysis

Average Scores for Tech and Mix Test Account

Over 5 days of gathering user feedback on the web application, we collected feedback

48

Figure 6.2: Average score of Tech account labels

information for 41 unique articles (28 in Tech account, 13 in Mix account) from 51 users;

39 out of the 41 articles contains labels that users provided according to their suggestions

of the labels.

The average scores for each article under the two test accounts are summarized in Figure 6.2

and Figure 6.3. The overall average scores in Tech website is higher than that of Mix. The

result is expected, as the Mix account contains more topics and is more dynamic than the

Tech account, which focuses only on technology news. The dynamic vocabulary and the

large number of topics contained in the Mix account impacts the effectiveness of selecting

a vocabulary set, especially when we generate a vocabulary set directly from a mini-batch

49

Figure 6.3: Average score of Mix account labels

of Online-LDA. Given that the topics might exceed the number that we assign prior to

Online-LDA procedure, as well as the vocabulary might not cover all aspects of the topics,

it is more likely that the words that should be considered as label candidates actually

appear later and are not included into the vocabulary set. In contrast, the Tech account

received higher average scores in general, as the news articles focus on the technology and

consumer electronic products, given that the number of topics are smaller and are more

likely to be close to the value we assign, and the topics are relatively static compared to

Mix account. The model is more accurate in terms of representing the latent topic model,

and the vocabulary set has a higher chance to contain words that should be considered as

50

of noun # of others Ave. score for noun Ave. score for others p-value

Tech 185 95 2.657 2.105 0.000242

Mix 87 43 2.316 1.744 0.00861

Table 6.2

Number of nouns and other types of labels and their average scores.

label candidates.

Overall Evaluation Result Analysis

Even thought Tech account has a higher average score, neither Tech nor Mix gives a

good average score in general. We compare the labels generated from automatic labeling

algorithm and the user feedback, and try to explore the reasons.

Appendix B shows the labels selected by automatic labeling algorithm and the users’

suggested labels for the 39 articles. An observation that can be drawn is that the users

suggested labels are usually nouns that cover the main subjects of the articles; on the other

hand, the labels selected by the algorithm are a mixture of nouns and other types of words.

By comparing the labels selected by the algorithm and the users’ feedback, one can see

that the words users prefer are more general, while the algorithm selects words that appear

more frequently and are more specific. The words users prefer and are not included in the

algorithm generated set are the ones that appear only once or a few times in the contextual

collection and the article itself. The observed parameter of the algorithm is the set of words

and their frequency, and the words that appear only once will not be treated as important

and associated with higher probability in the algorithm.

51

Figure 6.2 shows the number of nouns and other types of words selected by the algorithm

as well as their average scores and the p-value from a two sample t-test. The automatic

labeling algorithm also tend to assign higher scores for nouns than the other type of words.

The small p-value indicates that the scores for nouns and others are significantly different

in both accounts and the average scores for nouns and the other types of words reflects

users’ preference on nouns; the average scores for nouns are higher than the other types in

both Tech and Mix test accounts.

Finally, the words selected from the titles received a relatively higher scores compared to

the other words generated from the contents. Among the labels generated, 23 of them are

selected from the titles (22 in Tech account, 1 in Mix account). The average score for this

type of words is 4.5, which is much higher than the other labels. This proves the importance

of the words in the titles for representing the topic of the articles.

6.2.3 Article Labels and Vocabulary

Our approach to generate vocabulary for Online-LDA and automatic labeling is to generate

this directly from the first mini-batch. However, it is possible that the words that appeared

in the first mini-batch cannot cover the articles downloaded later, and therefore affect the

accuracy of the labels. We chose 8 articles (2 per day) from the 307 Tech account articles

that were downloaded across 4 days, and compared their average ratings. Note that each of

52

Figure 6.4: Average scores of the labels from the 8 Tech account articles

across 4 days

the articles contains 2 users’ feedback, and we took the average of their ratings.

In Figure 6.4, the average ratings do not have a decreasing pattern; one of the article in the

third day even has the highest average rating among all 8 articles. Given that the articles

in the Tech account are all related to technology, the number of topics are smaller and the

words used in articles might be similar. Therefore in this scenario, for a smaller latent topic

set, for 4 days the vocabulary set is still valid for Online-LDA and automatic labeling; it

still covers most of the words used in the articles throughout the days. However, further

experimentation is needed to examine the effect of static vocabulary versus frequently

updated news articles.

53

6.2.4 Comparing with Online-LDA Evaluation Results

In [6], the corpus Nature and Wikipedia was used for evaluation. A list of 4253 words

was used as the vocabulary set for Nature corpus, and a list of 7702 words was used as the

vocabulary set for Wikipedia corpus.

Compared to [6], the average length of the articles in our RSS news source is smaller than

that of either Nature or Wikipedia, which reflects the word frequencies in the automatic

labeling algorithm: in our topic model, most of the label candidates only appear once

within a mini-batch.

Another difference between the evaluation in [6] and ours is the vocabulary set. The

vocabulary is selected and pruned in [6], but the vocabulary in our evaluation is directly

generated from the articles. In a real world situation, due to the fact that articles in RSS

sources are constantly updated, the vocabulary in RSS news is more dynamic than static

articles; therefore, a small portion of articles cannot cover all of the articles in iterations

of Online-LDA algorithm. If the vocabulary cannot reflect words used in the articles, the

algorithm cannot provide useful label candidates in the topic model.

54

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this report, we have explored and implemented the approach of an automatic labeling

for RSS news articles. We combined the Online-LDA [6] and automatic labeling algorithm

[5] to generate labels automatically for news articles. The approach takes a stream of RSS

news articles as input, constructs a topic model on the mini-batches of articles, and use the

topic model as label candidates for automatic labeling algorithm. The labels generated for

an article are the words that appear explicitly in the article and have the highest relevance

score among the candidates. We have implemented this approach with Python and deployed

it on Google App Engine as a web application, which automatically download articles from

55

Feedly RSS service and generates labels for each of the articles.

7.2 Future Work

There are several places that we expect to improve in the future. First, the vocabulary is

currently set and fixed upon the first mini-batch. An approach to incorporate the update of

the vocabulary set is necessary for this online application as the stream of articles eventually

will bring new words and we want to consider them as part of the potential label candidates.

Second, there is room for a better algorithm to choose label candidates, as we only consider

words that explicitly appear in the articles.

In terms of implementation, potential improvements can be found in better use of GAE

Datastore to improve the data structure of the web application to gain efficiency. We also

look forward to using other Feedly APIs to enhance the quality of labeling by including

more information, e.g., the sources information and the manual labels for the articles if

available.

As for evaluation, we can improve the quality of the feedback by collecting more ratings

from users. The users submitted scores are usually from personal perspective, which can

be biased. To make the feedback as objective as possible, we can collect more feedback

and examine the statistics to evaluate the quality of the labels generated.

56

References

[1] Blei, D. M.; Ng, A. Y.; Jordan, M. I. the Journal of machine Learning research 2003,

3, 993–1022.

[2] The size of the World Wide Web (The Internet). http://www.

worldwidewebsize.com/.

[3] Board, R. A. Web available 2007.

[4] Kullback, S.; Leibler, R. A. The Annals of Mathematical Statistics 1951, pages 79–86.

[5] Mei, Q.; Shen, X.; Zhai, C. In Proceedings of the 13th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 490–499. ACM, 2007.

[6] Hoffman, M.; Bach, F. R.; Blei, D. M. In Advances in Neural Information Processing

Systems 23; Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A., Eds.;

Curran Associates, Inc., 2010; pages 856–864.

[7] Feedly Cloud API. http://developer.feedly.com/.

57

[8] Jordan, M. I.; Ghahramani, Z.; Jaakkola, T. S.; Saul, L. K. Machine learning 1999,

37(2), 183–233.

[9] Jordan, M. I. Learning in Graphical Models:[proceedings of the NATO Advanced

Study Institute...: Ettore Mairona Center, Erice, Italy, September 27-October 7,

1996], Vol. 89; Springer, 1998.

[10] Blei, D. M.; Griffiths, T. L.; Jordan, M. I. Journal of the ACM (JACM) 2010, 57(2), 7.

[11] Geman, S.; Geman, D. Pattern Analysis and Machine Intelligence, IEEE Transactions

on 1984, (6), 721–741.

[12] Gelfand, A. E.; Smith, A. F. Journal of the American statistical association 1990,

85(410), 398–409.

[13] Google App Engine. https://developers.google.com/appengine/?

csw=1.

[14] Python NDB. https://developers.google.com/appengine/docs/

python/ndb/.

[15] Chang, F.; Dean, J.; Ghemawat, S.; Hsieh, W. C.; Wallach, D. A.; Burrows, M.;

Chandra, T.; Fikes, A.; Gruber, R. E. ACM Transactions on Computer Systems

(TOCS) 2008, 26(2), 4.

[16] App Engine Modules in Python. https://developers.google.com/

appengine/docs/python/modules/.

58

[17] Krestel, R.; Fankhauser, P.; Nejdl, W. In Proceedings of the third ACM conference on

Recommender systems, pages 61–68. ACM, 2009.

59

Appendix A

News Article Sources

A.1 Technology

– Android

– Android and Me

– Android Central

– Cult of Android

– OS

– Cult of Mac

– Maximum PC

– Blogs

– Engadget

– Lifehacker

– The Verge

61

A.2 Mix

– Business

– Business Insider

– Cooking

– Food Network Blog

– Joy the Baker

– Design

– Cool Hunting

– Design Milk

– Yanko Design

– News

– The Huffington Post

– Technology

– Lifehacker

– ReadWrite

– The Verge

62

Appendix B

Evaluation Result: Generated Labels

and Feedback Labels

B.1 Tech

Title Generated labels Feedback labels

A 23-foot-tall home-made

Transformer is the world’s most

intimidating lawn ornament

kid, alero, eye, father, catch,

robot, problems, prime, kind,

names

Transformers

HTC One M8, M7 and Moto G GPe

receiving Android 4.4.4 update

vulnerability, openssl,

updategoogle, bug, rolled,

rolling, edition, related,

nexus, htc

android, google,

google play,

google play

edition, motorola

Top app, device and accessory sales

for July 2, 2014

murica, farther, wednesday,

monday, birthday, usual,

earlier, happy, top, app

sale, android,

google play

Microsoft’s smartwatch is

reportedly a fitness band with

smartphone notifications

thurrott, heart, filing, patent,

rumored, wearable, iwatch,

works, sold, steps

microsoft,

smartwatch,

wearables, watch,

notifications

Microsoft asks gamers to help

shape future Xbox One updates

moment, redmond, neogaf,

providing, livetv, gamifies,

singlequestion, spotted,

unblinking, guess

microsoft,

xbox, xbox

one, updates

63

HTC announces Q2 earnings, first

profit this year

creator, slow, based,

quarterly, nt, quarter, center,

billion, tablets, 43

android,

smartphones

The best Twitter apps for Android lives, allinclusive,

playbyplay, playbyplays,

timeline, tweets,

besttwitterapps, schedule,

shared, features

twitter,

android,Twitter

E-sports tournament now open to

all genders after internet outrage

ii, federation, iesf,

competitions, starcraft,

hearthstone, policy, esports,

tournament, open

gender, sexism,

gaming,

IFTTT Android wear channel

automates things from your wrist

select, actions, based, trigger,

recipes, simpler, criteria,

automated, triggered, folks

IFTTT, android,

android wear,

smartwatch,

Android

Showtime’s Anytime TV service

starts streaming on your Xbox 360

cord, showtime,

previousgeneration,

showtimefree, jackie, cutters,

penny, provider, ondemand,

stream

Anytime, xbox

360, xbox one,

xbox,Xbox

T-Mobile launching Nokia’s Lumia

635 with Windows Phone 8.1 on

July 5th

choice, nokia, storage, step,

sale, home, hit, tmobile,

launching, nokias

windows 8.1,

lumia, launch,

smartphone,Lumia

Android Wear app now available

for all in Google Play

minute, administering,

grab, begin, opened, hands,

expecting, arrives, glass,

haven

android, google,

google play,

android wear,

wear, wearables,

watch

Latest Galaxy Tab S commercial

highlights the Super AMOLED

display

panels, wqxga, 2560,

showcase, lineup, 1600,

centre, resolution, displays,

contrast

samsung, galaxy,

tablet, amoled,

android

Start with These Camera Settings to

Take Great Fireworks Photos

speed, shooting, shutter,

bunch, manual, photography,

diy, noted, blast, pictures

Google dumps porn from its ads imminent, scrambling,

related, banned, forbidden,

dating, escort, pornographic,

jumped, tangoed

google, ads,

adwords

64

Third-person Oculus Rift hack

delivers a true out-of-body

experience

obscenely, amateur, peer,

controlled, carried, wearer,

staring, experienced, stereo,

makers

oculus rift,

wearable,

prototype, gopro,

third person

Duolingo puts language learning on

Android Wear

pushed, introduces, exciting,

updates, app, duolingo, puts,

language, learning, android

Massive update to Google Docs and

Sheets brings a new UI, Android L

support and more

enhancing, greatly,

quickoffice, partially, native,

moregoogle, confirmed,

theme, rolling, word

android, google,

google docs,

docs, drive,

android L

Microsoft seeks Office for Android

testers as it readies tablet version

upcoming, nadella,

prerelease, word, conference,

interest, expected,

participants, push, scheduled

microsoft,

android, office,

microsoft office,

tablet

Berkeley will give free weed

to homeless medical marijuana

patients

cbs, paying, dwell,

lowincome, spokesperson,

unanimously, sean, city, total,

cruel

weed, medical,

marijuana,

homeless

Channel Your Inner Entrepreneur to

Excel at Work

jared, snyder, organizing,

state, complete, lifehacker,

china, global, identify,

channel

entrepreneurship,

entrepreneur

Apple brings two-factor

authentication to iCloud.com

verify, password, attempting,

id, identity, enabled,

temporary, icloud, code,

require

Apple,

authentication

Flying the uncertain skies with the

latest Phantom drone

flying, uncertain, skies, latest,

phantom, drone, vision,

corner, wild, pro

DJI, flight,

camera,

Sunrise Calendar jumps from iOS

to Mac, with support for Facebook,

Evernote, etc.

songkick, asana, integration,

services, source, networks,

switch, tomorrow, popular,

update

calendar, sunrise,

apps

Sign-Ups for Evolve PC Alpha

Being Accepted Now

survey, shooter, sean, studios,

happyhunting, shooters,

participant, 1113, refrain,

xbox

game, gaming,

alpha

AppleâĂŹs third-quarter earnings

call is coming July 22

retail, cook, billion, release,

quarter, recently, store, apple,

apples, thirdquarter

earnings,earnings

65

’Fast & Furious 7’ release date

moved forward to April 3rd, 2015

fastfurious, ff7, walker,

dramatic, space, completed,

movie, announced, july,

earlier

film, release,

Disney brings popular Facebook

soccer game Bola to iOS

football, tournament, 7,

running, acquired, play, store,

live, lets, disney

ios, facebook,

soccer

B.2 Mix

Title Generated labels Feedback labels

Indie Bookstore Rehires Workers It

Fired For Supporting The Union

lieu, morningside,

nearunanimous, contended,

shortly, annie, terminated,

doeblin, dispute, reinstated

union

Sometimes, Canned Beer Is

Actually Cheaper Than a Keg

ounce, kegduring, dudephoto,

cans, compared, resulted,

patrick, cups, tastes, tipping

beer, keg

Chinese Artist Exhibits Gorgeous

’Sculptures’ Built By Bees

eliminate, transparent,

beijingbased, cells,

coolhunting, hangzhou,

dice, symmetrically, thusly,

courtesy

bees, art

Neymar Out Of World Cup With

Fractured Vertebrae (VIDEO)

fit, vertebra, postgame,

lasmar, superstar, brazilian,

rodrigo, zzazreqcus, pain,

espnfc

football, world

cup, epsn

James Rodriguez Is The Rising Star

Of 2014 World Cup

envigado, argentina, coach,

brazil, shy, talented,

technical, titles, champion,

professional

fifa, world cup,

football, soccer

Learn How to Cook Anything on

the Grill With This Infographic

memorizing, chicken, beef,

burgers, infographics,

seafood, infographiceven,

undercooked, overcooked,

tells

cooking, grilling

66

Reclaiming "USA!, USA! USA!"

From the Bigots in Murrieta

constituents, antiimmigrant,

reform, policymaking,

shred, nclr, anniversary,

unconscionably, riowa,

dedicated

immigration,

policy

This Giant Picnic Blanket Will

Forever Transform Your Summer

Snack Fantasies

snacks, sunshine, tablecloths,

almighty, duo, sandwiches,

function, feat, patrik, peanut

art, picnic

Neymar Injured, Might Not Play

Against Germany

speed, yellow, knocked, evan,

blow, pitch, doherty, missing,

thiago, cards

fifa, world

cup, football,

soccer,Football

NOVA: A Wireless Flash for Better

iPhone Photos

presets, ugliness, bluetooth,

mode, reign23, manual,

preference, phones,

unrelenting, soft

iphone, flash,

camera,

photography,

photo

LOOK: Chile Releases Stunning

UFO Photos

dgac, meteorological, cefaa,

enlarged, jose, ceffa,

collahuasi, shown, adds,

normal

UFO, drones

For Your Viewing Pleasure, We

Present Some Nude Piles As Art

(NSFW)

nudes, raft, berlin,

ambiguous, earliest,

theodore, converge,

togetherness, bratislava,

bencicova

How China’s Most Famous

Grounded Artist Collaborated With

A Navajo Man Thousands Of Miles

Away

vase, organizers, expecting,

dropping, weiwei, causing,

commissioned, landscapes,

fe, pottery

Navajo, art

67

	AUTOMATIC LABELING OF RSS ARTICLES USING ONLINE LATENT DIRICHLET ALLOCATION
	Recommended Citation

	LUreport.pdf

