19 research outputs found

    Atrial fibrillation in the patients with obesity and arterial hypertension

    No full text
    We have examined 184 working-aged police officer men who have been suffering from arterial hypertension (AH). It was found that obesity in this group of patients significantly increases frequency of atrial fibrillation. Moreover, it was established that there is a direct relationship between arrhythmia and degree of obesity. The main risk factors of atrial fibrillation in men with obesity are AH II-III stage, left ventricular and left atrium dilatation, low level of high density lipoproteins in serum, abnormal daily profile of blood pressure (non-dipper type). We have not revealed the presence of the association between atrial fibrillation, age and ischemic heart disease in obese patients

    ADP-Ribosylation Factor (ARF) Interaction Is Not Sufficient for Yeast GGA Protein Function or Localization

    No full text
    Golgi-localized γ-ear homology domain, ADP-ribosylation factor (ARF)-binding proteins (GGAs) facilitate distinct steps of post-Golgi traffic. Human and yeast GGA proteins are only ∼25% identical, but all GGA proteins have four similar domains based on function and sequence homology. GGA proteins are most conserved in the region that interacts with ARF proteins. To analyze the role of ARF in GGA protein localization and function, we performed mutational analyses of both human and yeast GGAs. To our surprise, yeast and human GGAs differ in their requirement for ARF interaction. We describe a point mutation in both yeast and mammalian GGA proteins that eliminates binding to ARFs. In mammalian cells, this mutation disrupts the localization of human GGA proteins. Yeast Gga function was studied using an assay for carboxypeptidase Y missorting and synthetic temperature-sensitive lethality between GGAs and VPS27. Based on these assays, we conclude that non-Arf-binding yeast Gga mutants can function normally in membrane trafficking. Using green fluorescent protein-tagged Gga1p, we show that Arf interaction is not required for Gga localization to the Golgi. Truncation analysis of Gga1p and Gga2p suggests that the N-terminal VHS domain and C-terminal hinge and ear domains play significant roles in yeast Gga protein localization and function. Together, our data suggest that yeast Gga proteins function to assemble a protein complex at the late Golgi to initiate proper sorting and transport of specific cargo. Whereas mammalian GGAs must interact with ARF to localize to and function at the Golgi, interaction between yeast Ggas and Arf plays a minor role in Gga localization and function

    Yeast and human Ysl2p/hMon2 interact with Gga adaptors and mediate their subcellular distribution

    No full text
    The Gga proteins represent a family of ubiquitously expressed clathrin adaptors engaged in vesicle budding at the tubular endosomal network/trans Golgi network. Their membrane recruitment is commonly thought to involve interactions with Arf and signals in cargo through the so-called VHS domain. For yeast Gga proteins, however, partners binding to its VHS domain have remained elusive and Gga localization does not absolutely depend on Arf. Here, we demonstrate that yeast Gga recruitment relies on a network of interactions between the scaffold Ysl2p/Mon2p, the small GTPase Arl1p, and the flippase Neo1p. Deletion of either YSL2 or ARL1 causes mislocalization of Gga2p, whereas a neo1-69 mutant accumulates Gga2p on aberrant structures. Remarkably, Ysl2p directly interacts with human and yeast Ggas through the VHS domain, and binding to Gga proteins is also found for the human Ysl2p orthologue hMon2. Thus, Ysl2p represents an essential, evolutionarily conserved member of a network controlling direct binding and membrane docking of Ggas. Because activated Arl1p is part of the network that binds Gga2p, Arf and Arf-like GTPases may interact in a regulatory cascade

    Novel Proteins Linking the Actin Cytoskeleton to the Endocytic Machinery in Saccharomyces cerevisiae

    No full text
    The importance of coupling the process of endocytosis to factors regulating actin dynamics has been clearly demonstrated in yeast, and many proteins involved in these mechanisms have been identified and characterized. Here we demonstrate the importance of two additional cortical components, Ysc84p and Lsb5p, which together are essential for the organization of the actin cytoskeleton and for fluid phase endocytosis. Both Ysc84p and Lsb5p were identified through two-hybrid screens with different domains of the adaptor protein Sla1p. Ysc84p colocalizes with cortical actin and requires the presence of an intact actin cytoskeleton for its cortical localization. Ycl034w/Lsb5p localizes to the cell cortex but does not colocalize with actin. The Lsb5 protein contains putative VHS and GAT domains as well as an NPF motif, which are all domains characteristic of proteins involved in membrane trafficking. Deletion of either gene alone does not confer any dramatic phenotype on cells. However, deletion of both genes is lethal at elevated temperatures. Furthermore, at all temperatures this double mutant has depolarized actin and an almost undetectable level of fluid phase endocytosis. Our data demonstrate that Ysc84p and Lsb5p are important components of complexes involved in overlapping pathways coupling endocytosis with the actin cytoskeleton in yeast
    corecore