1 research outputs found

    Highly Efficient Phosphate Sequestration in Aqueous Solutions Using Nanomagnesium Hydroxide Modified Polystyrene Materials

    No full text
    Phosphate removal is important for the control of eutrophication, and adsorption may serve as a powerful supplement to biological phosphate sequestration. Here, we develop a new composite adsorbent (denoted as HMO-PN) by encapsulating active nano-Mg­(OH)<sub>2</sub> onto macroporous polystyrene beads modified with fixed quaternary ammonium groups [CH<sub>2</sub>N<sup>+</sup>(CH<sub>2</sub>)<sub>3</sub>Cl]. The N<sup>+</sup>-tailored groups can accelerate the diffusion of target phosphate through electrostatic attractions. The performance of the as-prepared HMO-PN was found to depend on the pH value of an aqueous medium. HMO-PN also exhibits high sorption selectivity toward the target phosphate. Kinetic equilibrium of phosphate adsorption can be achieved within 100 min, and the calculated maximum adsorption capacity is approximately 1.47 mmol/g (45.6 mg/g). Column experiments further show that the effluent concentration of phosphate can be reduced to below 0.5 mg/L (500 BV), suggesting highly efficient phosphate sequestration. Moreover, the exhausted HMO-PN can be readily regenerated using an alkaline brine solution
    corecore