29 research outputs found

    Blind Video Deflickering by Neural Filtering with a Flawed Atlas

    Full text link
    Many videos contain flickering artifacts. Common causes of flicker include video processing algorithms, video generation algorithms, and capturing videos under specific situations. Prior work usually requires specific guidance such as the flickering frequency, manual annotations, or extra consistent videos to remove the flicker. In this work, we propose a general flicker removal framework that only receives a single flickering video as input without additional guidance. Since it is blind to a specific flickering type or guidance, we name this "blind deflickering." The core of our approach is utilizing the neural atlas in cooperation with a neural filtering strategy. The neural atlas is a unified representation for all frames in a video that provides temporal consistency guidance but is flawed in many cases. To this end, a neural network is trained to mimic a filter to learn the consistent features (e.g., color, brightness) and avoid introducing the artifacts in the atlas. To validate our method, we construct a dataset that contains diverse real-world flickering videos. Extensive experiments show that our method achieves satisfying deflickering performance and even outperforms baselines that use extra guidance on a public benchmark.Comment: To appear in CVPR2023. Code: github.com/ChenyangLEI/All-In-One-Deflicker Website: chenyanglei.github.io/deflicke

    Inhibition of phosphodiesterase10A attenuates morphine-induced conditioned place preference

    Get PDF
    Background Phosphodiesterase (PDE) 10A is selectively expressed in medium spiny neurons of the striatum. Nucleus accumbens (NAc) is a key region that mediates drug reward and addiction-related behaviors. To investigate the potential role of PDE10A in the reinforcement properties of morphine, we tested the effect of MP-10, a selective inhibitor of PDE10A, on acquisition, expression, and extinction of morphine-induced conditioned place preference (CPP). Results The results show that 2.5 mg/kg MP-10, administered subcutaneously, significantly inhibited the acquisition of morphine-induced CPP. The same dose of MP-10 alone did not result in the CPP. Moreover, MP-10 did not alter the expression of morphine-induced CPP, but did accelerate the extinction of morphine-induced CPP. Additionally, chronic treatment with 2.5 mg/kg MP-10 decreased expression of phosphorylated CREB (pCREB), activated cAMP response element binding protein, in dorsomedial striatum, in shell of NAc, and in anterior cingulate cortex (ACC) as well as decreased expression of ΔFosB in the shell of NAc and ACC. Conclusion The results suggest that inhibition of PDE10A may have therapeutic potential in the treatment of opioid addiction

    Inhibition of phosphodiesterase10A attenuates morphine-induced conditioned place preference

    Full text link
    Background: Phosphodiesterase (PDE) 10A is selectively expressed in medium spiny neurons of the striatum. Nucleus accumbens (NAc) is a key region that mediates drug reward and addiction-related behaviors. To investigate the potential role of PDE10A in the reinforcement properties of morphine, we tested the effect of MP-10, a selective inhibitor of PDE10A, on acquisition, expression, and extinction of morphine-induced conditioned place preference (CPP). Results: The results show that 2.5 mg/kg MP-10, administered subcutaneously, significantly inhibited the acquisition of morphine-induced CPP. The same dose of MP-10 alone did not result in the CPP. Moreover, MP-10 did not alter the expression of morphine-induced CPP, but did accelerate the extinction of morphine-induced CPP. Additionally, chronic treatment with 2.5 mg/kg MP-10 decreased expression of phosphorylated CREB (pCREB), activated cAMP response element binding protein, in dorsomedial striatum, in shell of NAc, and in anterior cingulate cortex (ACC) as well as decreased expression of ΔFosB in the shell of NAc and ACC. Conclusion: The results suggest that inhibition of PDE10A may have therapeutic potential in the treatment of opioid addiction

    Improving the Tribological Properties of Spark-Anodized Titanium by Magnetron Sputtered Diamond-Like Carbon

    No full text
    Spark-anodization of titanium can produce adherent and wear-resistant TiO2 film on the surface, but the spark-anodized titanium has lots of surface micro-pores, resulting in an unstable and high friction coefficient against many counterparts. In this study, the diamond-like carbon (DLC) was introduced into the micro-pores of spark-anodized titanium by the magnetron sputtering technique and a TiO2/DLC composite coating was fabricated. The microstructure and tribological properties of TiO2/DLC composite coating were investigated and compared with the anodic TiO2 mono-film and DLC mono-film. Results show that the DLC deposition significantly decreased the surface roughness and porosity of spark-anodized titanium. The fabricated TiO2/DLC composite coating exhibited a more stable and much lower friction coefficient than anodic TiO2 mono-film. Although the friction coefficient of the composite coating and the DLC mono-film was similar under both light load and heavy load conditions, the wear life of the composite coating was about 43% longer than that of DLC mono-film under heavy load condition. The wear rate of titanium with protective composite coating was much lower than that of titanium with DLC mono-film. The superior low friction coefficient and wear rate of the TiO2/DLC composite coating make it a good candidate as protective coating on titanium alloys

    HTMC: hierarchical tolerance mask correspondence for human body point cloud registration

    No full text
    Point cloud registration can be solved by searching for correspondence pairs. Searching for correspondence pairs in human body point clouds poses some challenges, including: (1) the similar geometrical shapes of the human body are difficult to distinguish. (2) The symmetry of the human body confuses the correspondence pairs searching. To resolve the above issues, this article proposes a Hierarchical Tolerance Mask Correspondence (HTMC) method to achieve better alignment by tolerating obfuscation. First, we define various levels of correspondence pairs and assign different similarity scores for each level. Second, HTMC designs a tolerance loss function to tolerate the obfuscation of correspondence pairs. Third, HTMC uses a differentiable mask to diminish the influence of non-overlapping regions and enhance the influence of overlapping regions. In conclusion, HTMC acknowledges the presence of similar local geometry in human body point clouds. On one hand, it avoids overfitting caused by forcibly distinguishing similar geometries, and on the other hand, it prevents genuine correspondence relationships from being masked by similar geometries. The codes are available at https://github.com/ChenPointCloud/HTMC

    Self-Lubricating PEO–PTFE Composite Coating on Titanium

    No full text
    A self-lubricating plasma electrolytic oxidation⁻polytetrafluoroethylene (PEO⁻PTFE) composite coating was successfully fabricated on the surface of commercially pure titanium by a multiple-step method of plasma electrolytic oxidation, dipping and sintering treatment. The microstructure and tribological properties of the PEO⁻PTFE composite coating were investigated and compared with the PEO TiO2 coating and the PTFE coating on titanium. Results show that most of the micro-pores of the PEO TiO2 coating were filled by PTFE and the surface roughness of PEO⁻PTFE composite coating was lower than that of the PEO TiO2 coating. Furthermore, the PEO⁻PTFE composite coating shows excellent tribological properties with low friction coefficient and low wear rate. This study provides an insight for guiding the design of self-lubricating and wear-resistant PEO composite coatings
    corecore