143 research outputs found

    AMC: Attention guided Multi-modal Correlation Learning for Image Search

    Full text link
    Given a user's query, traditional image search systems rank images according to its relevance to a single modality (e.g., image content or surrounding text). Nowadays, an increasing number of images on the Internet are available with associated meta data in rich modalities (e.g., titles, keywords, tags, etc.), which can be exploited for better similarity measure with queries. In this paper, we leverage visual and textual modalities for image search by learning their correlation with input query. According to the intent of query, attention mechanism can be introduced to adaptively balance the importance of different modalities. We propose a novel Attention guided Multi-modal Correlation (AMC) learning method which consists of a jointly learned hierarchy of intra and inter-attention networks. Conditioned on query's intent, intra-attention networks (i.e., visual intra-attention network and language intra-attention network) attend on informative parts within each modality; a multi-modal inter-attention network promotes the importance of the most query-relevant modalities. In experiments, we evaluate AMC models on the search logs from two real world image search engines and show a significant boost on the ranking of user-clicked images in search results. Additionally, we extend AMC models to caption ranking task on COCO dataset and achieve competitive results compared with recent state-of-the-arts.Comment: CVPR 201

    Visual to Sound: Generating Natural Sound for Videos in the Wild

    Full text link
    As two of the five traditional human senses (sight, hearing, taste, smell, and touch), vision and sound are basic sources through which humans understand the world. Often correlated during natural events, these two modalities combine to jointly affect human perception. In this paper, we pose the task of generating sound given visual input. Such capabilities could help enable applications in virtual reality (generating sound for virtual scenes automatically) or provide additional accessibility to images or videos for people with visual impairments. As a first step in this direction, we apply learning-based methods to generate raw waveform samples given input video frames. We evaluate our models on a dataset of videos containing a variety of sounds (such as ambient sounds and sounds from people/animals). Our experiments show that the generated sounds are fairly realistic and have good temporal synchronization with the visual inputs.Comment: Project page: http://bvision11.cs.unc.edu/bigpen/yipin/visual2sound_webpage/visual2sound.htm

    Speeding up Context-based Sentence Representation Learning with Non-autoregressive Convolutional Decoding

    Full text link
    Context plays an important role in human language understanding, thus it may also be useful for machines learning vector representations of language. In this paper, we explore an asymmetric encoder-decoder structure for unsupervised context-based sentence representation learning. We carefully designed experiments to show that neither an autoregressive decoder nor an RNN decoder is required. After that, we designed a model which still keeps an RNN as the encoder, while using a non-autoregressive convolutional decoder. We further combine a suite of effective designs to significantly improve model efficiency while also achieving better performance. Our model is trained on two different large unlabelled corpora, and in both cases the transferability is evaluated on a set of downstream NLP tasks. We empirically show that our model is simple and fast while producing rich sentence representations that excel in downstream tasks

    Rethinking Skip-thought: A Neighborhood based Approach

    Full text link
    We study the skip-thought model with neighborhood information as weak supervision. More specifically, we propose a skip-thought neighbor model to consider the adjacent sentences as a neighborhood. We train our skip-thought neighbor model on a large corpus with continuous sentences, and then evaluate the trained model on 7 tasks, which include semantic relatedness, paraphrase detection, and classification benchmarks. Both quantitative comparison and qualitative investigation are conducted. We empirically show that, our skip-thought neighbor model performs as well as the skip-thought model on evaluation tasks. In addition, we found that, incorporating an autoencoder path in our model didn't aid our model to perform better, while it hurts the performance of the skip-thought model

    Diversified Texture Synthesis with Feed-forward Networks

    Full text link
    Recent progresses on deep discriminative and generative modeling have shown promising results on texture synthesis. However, existing feed-forward based methods trade off generality for efficiency, which suffer from many issues, such as shortage of generality (i.e., build one network per texture), lack of diversity (i.e., always produce visually identical output) and suboptimality (i.e., generate less satisfying visual effects). In this work, we focus on solving these issues for improved texture synthesis. We propose a deep generative feed-forward network which enables efficient synthesis of multiple textures within one single network and meaningful interpolation between them. Meanwhile, a suite of important techniques are introduced to achieve better convergence and diversity. With extensive experiments, we demonstrate the effectiveness of the proposed model and techniques for synthesizing a large number of textures and show its applications with the stylization.Comment: accepted by CVPR201
    corecore