We study the skip-thought model with neighborhood information as weak
supervision. More specifically, we propose a skip-thought neighbor model to
consider the adjacent sentences as a neighborhood. We train our skip-thought
neighbor model on a large corpus with continuous sentences, and then evaluate
the trained model on 7 tasks, which include semantic relatedness, paraphrase
detection, and classification benchmarks. Both quantitative comparison and
qualitative investigation are conducted. We empirically show that, our
skip-thought neighbor model performs as well as the skip-thought model on
evaluation tasks. In addition, we found that, incorporating an autoencoder path
in our model didn't aid our model to perform better, while it hurts the
performance of the skip-thought model